
NASA , - -  
TP 
1424 
c.1 

NASA Technical Paper 1424 
j 

'I 

~ INFORM - An Interactive Data 
Collection and Display Program 
With Debugging Capability 

David S. Cwynar 

JANUARY 1980 



TECH LIBRARY KAFB, NM 

I I I I  Ill1 Ill11 lllll lllll lllll 1111 Ill1 
0334798 

NASA Technical Paper 1424 

INFORM - An Interactive Data 
Collection and Display Program 
With Debugging Capability 

David S. Cwynar 
Lewis Research Cepzter 
C l e v e l a d ,  Ohio 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1980 

- . 





CONTENTS 
Page 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SUMMARY 1 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 PROGRAM DESCRIPTION 

Interface to User's Environment 3 
INFORMSubroutine 9 

. . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DATAO Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
SAMPLE Subroutine 11 
CLRSMP Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PROGRAM STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12  
Core Requirements 12  
Calling Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DESCRIPTION OF PROGRAM OPERATION . . . . . . . . . . . . . . . . . . . .  13 
INFORM Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
U s e  of Commands 15 
DATAO Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  25 SAMPLE Subroutine Control 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

APPLICATIONS AND EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

PROGRAM STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
INFORM Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
Program Flow Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
DATAO and SAMPLE Command Processor . . . . . . . . . . . . . . . . . . . .  44 
SAMPLE Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
DATAO Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

PROGRAMMING NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

Handling of Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
Numerical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 
Common Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

APPENDIXES 
A - S  YMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

iii 

. 



B . CONVENTIONS AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . .  65 
C-LNFORMCOMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 
D . COMMANDS TO CONTROL THE DATA0 SUBROUTINE . . . . . . . . . . .  87 
E . COMMANDS TO CONTROL SUBROUTINE SAMPLE . . . . . . . . . . . . .  92 
F . DESCRIKTION OF REQUIRED SUPPORTIVE SOFTWARE . . . . . . . . . .  97 
G . FIBW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106 
H . SUBROUTINE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .  152 
I . SUMMARY OF COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . .  161 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 

iv 



SUMMARY 

INFORM was developed to aid assembly-language programmers of mini- and 
micro-computers in solving the man-machine communications problems that exist 
when scaled integers a re  involved. In addition to producing displays of quasi-steady- 
state values, INFORM provides an interactive mode fo r  debugging programs, making 
program patches, and modifying the displays. Auxiliary routines SAMPLE and DATA0 
add dynamic data acquisition and high-speed dynamic display capability to the program. 

This report contains detailed programming information and flow charts to aid in 
implementing INFORM on various machines. It also serves as  a user's guide for the 
program. (An assembly language listing is available through COSMIC. ) The text is 
designed to be tutorial to novice programmers, yet not cumbersome to experienced 
persons. Detailed descriptions of all supportive software a re  provided. 

to satisfy the individual user's needs and to identifying likely modifications and explain- 
ing how they can be accomplished. The program is organized in a modularized, 
straightforward manner to simplify modifications and additions. 

Throughout the report, consideration is given to possible program modifications 

INTRODUCTION 

The advent of the microprocessor and the reduction of the cost of computing ma- 
chines has led to the use of digital computers for control of everything from television 
games to sophisticated industrial processes. Ruggedized digital hardware is now en- 
tering the heretofore mechanical domain of automobile and aircraft controls and other 
applications in hostile environments. 

To be cost effective and to improve reliability, the number of parts in digital sys- 
tems is being cut to a minimum. Such reductions, along with requirements for in- 
creased computing speed, demand assembly o r  machine language programming tech- 
niques that use scaled-integer arithmetic calculations. Unfortunately for the program- 
mers  of such systems, few aids exist that allow the programmer to think in terms of 
real-world values a s  is afforded by the use of higher level languages such a s  Fortran, 
Basic, and PL/M. This makes locating errors  within assembly-language programs 
extremely difficult, increases the time required to get such programs up and running, 
and significantly increases the cost of software development. 



The INFORM program is designed to overcome such obstacles. It might be thought 
of as an assembly-language programmer1 s dynamic debug, development, and data col- 
lection tool. INFORM was developed to meet the needs of engineers who were  develop- 
ing real-time digital controls under time and hardware constraints that made the use 
of integer arithmetic and scaled parameters necessary. The program was designed to 
meet the steady-state data display requirements of such controls. An interactive mode 
provides for dynamic display programming as well as some debugging and modification 
capability. The SAMPLE and DATAO subroutine additions were designed to meet dy- 
namic data collection and real-time data display requirements of transient data. 

Although originally developed on a 16-bit SEL 810B computer, the program was 
designed for diverse applications. It uses only 5 k words of the SEL core and is or- 
ganized in a modularized, straightforward manner, permitting easy addition to, o r  
modification of the program to meet the recurring o r  one-shot needs of any specific 
programmer. The SAMPLE and DATAO programs a re  examples of additions devel- 
oped for the recurring needs of aerospace control systems being designed and tested 
at the Lewis Research Center (ref. 1). The use of these routines within the first year 
of operation saved sufficient time to justify the development costs. Aimed at general 
purpose applications, INFORM, SAMPLE, and DATAO have been used for nearly every 
project, large o r  small, performed by the SEL 810B propulsion control computer at 
the Lewis facility and a re  now being expanded to speed operation of Lewis's hybrid 
computing facility. 

The INFOFU4 program makes extensive use of an efficient input/output library 
called CIPHER. The function of each subroutine contained within this library, as well 
as information regarding other required supportive software, is given in detail id ap- 
pendixes A to I. 

SAMPLE subroutines and how they are  intended to operate within a userls system. 
The report then describes their operation. Details on the use of the interactive com- 
mand structure for accomplishing the possible tasks follows. Examples a re  given to 
illustrate use of the software within a system. The report supplies all the information 
required by programmers to translate the program to their machines. Execution 
times and core requirements a re  given for an SEL 810B computer. Complete explana- 
tions and flow charts a re  given for all facets of the program. Reasons for using par- 
ticular techniques a re  given to aid in the adaptation of the program to varing needs and 
to serve a tutorial function for novice assembly-language programmers. In addition, 
many possible modifications have been identified and explained. 

request through COSMIC. 

The report first describes the overall capabilities of the INFORM, DATAO, and 

Functional assembly-language listings for SEL 810B computers a re  available upon 

2 



PROGRAM DESCRIPTION 

To understand how INFORM, SAMPLE, and DATAO operate, we will first discuss 
how these subroutines a re  incorporated into a functional system. Being subroutines, 
these programs do not set up an interrupt environment, nor do they perform timing 
functions usually performed by an executive. Instead, they a re  designed to operate in 
a user-structured environment. Two examples of how they f i t  into a typical operational 
environment will  be given. An overall description of what each subroutine does follows 
these examples. All numerical values within the user 's  program to be manipulated by 
the INFORM , SAMPLE, and DATAO software are assumed to be integers representing 
parameters that have been scaled to range between the negative and positive integer 
value limits of the machine. The program also handles unity scaled integer parame- 
te rs .  

For clarity, this report makes a distinction between operators, programmers, and 
users. The term "operator" refers to a user who is conversing with INFORM in an in- 
teractive environment. "Programmer" refers to the person o r  persons who have im- 
plemented the INFORM software o r  its calling main programs on the user's computer 
and are  responsible for the object modules. The term "user" is used when no distinc- 
tion need be made between an operator o r  programmer. An operator o r  programmer 
is always a user, but the reverse is not always true. 

Interface to User's Environment 

The INFORM package comprises four independently callable subroutines: INFORM, 
DATAO, SAMPLE, and CLRSMP. Specifics of the calling sequences and use of each 
subroutine a re  given in a separate section of the report. Although they may be called 
by any main program, they a re  primarily intended to be executed on the lowest o r  
"spare-time" levels of a priority interrupt system, where the main function of the com- 
puter (e.g. ,  a process control algorithm) is executed on higher levels. These higher 
levels a re  usually driven by recurring external interrupts such a s  those of a real-time 
clock o r  interval timer. When used in this fashion, the command structure made avail- 
able to the operator by INFORM creates an interactive operating environment for any 
passive, real-time program. Further, the programmer creates this environment by 
simply defining the interrupt structure and executing a simple CALL INFORM. state- 
ment on the lowest level. 

Lf the system also uses the digital computer for data collection, a simple call to 
SAMPLE, where the storing of data would normally be programmed, gives the INFORM 
subroutine interactive control over the data-collection process. This allows the oper- 
ator to store any parameter available within the machine at the time of call. The oper- 

3 



ator also gains the ability to restructure the available storage. For example 200 time 
points of 20 variables, 800 time points of 5 variables, o r  one time point of 4000 varia- 
bles are all possible with 4 k words of storage. In addition, using the SAMPLE sub- 
routine automatically provides a means for transferring the stored data to a bulk stor- 
age device by means of INFORM' s interactive command structure. 

In a similar manner, dynamic displays of system variables may be controlled by 
the INFORM subroutine if the programmer uses the DATAO subroutine for his displays. 
The programmer need only insure that all parameters to be displayed a re  in the core 
and that DATAO is called in the interrupt sequence every time he wishes to update the 
display. All  programming is then complete to give the operator interactive control 
over the display. The operator may then select which parameters a r e  displayed and 
expand or compress scales at will without concern for scaling o r  recalibration of the 
display recorders. As  written, DATAO is intended for use with fixed-calibration ana- 
log displays using 0- to 10-volt inputs, but it may be modified to work with any display 
that can be driven to its scale extremities by system digital-to-analog converters 
(Dacs). 

Figures 1 and 2 show the execution sequence of the INFORlVI, DATAO, SAMPLE, 
and CLRSMP subroutines for a typical system. The updating of the main program is 
controlled by the system clock, with data samples being saved by SAMPLE every sixth 
clock period. The DATAO display is updated every other clock period. If sufficient 
time is available between updates to execute the main program and update SAMPLE o r  
DATAO, a simple one-level interrupt scheme (as shown in fig. 1) will suffice. In this 
system the system clock interrupts the INFORM background task and forces execution 
of the main program. After each completion of the main task, a decision whether 
SAMPLE o r  DATAO should be updated is made before returning to INFORM. The flow 
chart for such a system is shown in figure 2 .  Flow-chart symbols a re  defined in ap- 
pendix G. 

A multilevel interrupt sequence may be executed a s  shown in figures 3 and 4.  This 
system no longer requires that sufficient time be available during each update to exe- 
cute SAMPLE or DATAO. Instead, it may be treated a s  any other interrupt level with 
its execution being determined on a priority basis with requests for service being gen- 
erated by devices such as system clocks o r  direct memory access controllers. In such 
an asychronous environment, conflicts might arise when attempting to change the 
DATAO display or  to restructure the SAMPLE storage through use of INFORM com- 
mands while higher priority routines a re  using SAMPLE and DATAO. Such problems 
have been eliminated within the INFORM software, provided the INFORM interactive 
commands are always performed on a lower level of priority than DATAO, SAMPLE, 
or CLRSMP. 

4 



Program 
flow 

DATA0 - I I .  1 m 
Time - 

Figure 1. -Typica l  execution sequence for  systems us ing  one p r io r i t y  in ter rupt .  

5 



i n te r rup t  572- 
In i t ia l ize program 
and establish 
i n te r rup t  s t ruc tu re  

Perform main processing 
func t i on  (i. e., con t ro l  
a lgor i thm 

Yes 

DATA0 

Produce dynamic 
analog display 

- samples 
taken 

I = I + 1  

mb INFORM 

Excute d i f ferent  
system background 
task ( i f  required) 

I = I + 1  1 RETURN 

Figure 2 - Typical flow cha r t  for  systems us ing one p r io r i t y  interrupt. 

6 



System clock 
( i n t e r r u p t  level 4) 

Take samples clock 
( i n t e r r u p t  level 3) 

( i n t e r r u p t  level 11 

( i n t e r r u p t  level 1) 

Interrupts 
(level 4 = h ighest p r i o r i t y )  

4 f t f + t f f $. + t (  - 1. t 
t t 4 ? + 4 1 1. f ' t 

t . 
Execute ma in  

program I 

system inpu ts  

Gather 

Direct-memory 
access control lers 

I I I I I I I I I n  
I -I 

I I P  lllr Program ~ 

flow 

Execute jl I I I 
DATAo I 

I \  

I 
Execute 

CLRSMP 

Execute 

I 
SAMPLE 

Figure 3. - Typical execution sequence for mult i level  i n t e r r u p t  system w i th  data i npu t  t h r o u g h  direct-memory access channels. 

7 



(XF--) 
level I 

In i t ia l ize program and 
establ ish i n te r rup t  
s t r u c t u r e  

I I 

-, \1 
CALL 
INFORM s, 

( 0) 

level 2 

- 

Perform main processing 
func t i on  (i.e., cont ro l  
a lgor i thm 

Inpu t  any data 
for  display not  
already in core 

DATA0 

Produce dynamic 
analog display 

\1 
RETURN 

Save sample (N) C 

I n t e r r u p t  

Start direct-memory 
access contr  01 le r 
for  system inputs  

RETURN 

Reset sample 
counter  

CLRMP 

Clear SAMPLE 
storage area 

F igu re  4. - Typical f l w  cha r t  for  m u l t i  level i n t e r r u p t  system w i th  data 
i n p u t  t h rough  direct-memory access channels. 

8 



INFORM, DATAO, SAMPLE, and CLRSMP provide nearly everything the program- 
mer requires to perform the complete data collection and display task. INFORM does, 
however, require use of some additional software in the form of standard Fortran 
arithmetic routines and a special input/output (I/O) library. The effect on the oper- 
ating environment of the specifics of the particular Fortran library available to the 
programmer cannot be given here because it will vary from machine to machine. The 
1/0 library used is the CIPHER library developed at Lewis. It is this library that is 
responsible for many of the convenience features available in INFORM. A complete 
list of all required subroutines and their functions is given in appendix F. 

INFORM Subroutine 

The INFORM subroutine provides an on-line display and data manipulation capabil- 
ity for single-precision, integer values retained in absolute memory. The operator 
programs the display while the program is running in the interactive mode. Memory 
locations a re  referred to by operator-assigned, one- to five-character, alphanumeric 
names. Values for these named locations may be displayed in engineering units (EU) 
or octal. INFORM determines these EU's by multiplying each integer value by a scale 
factor associated with the name. Once defined, the names and their associated loca- 
tions and scale factors remain fixed unless redefined by the operator. 

variable interactive. The display may be produced on any available 1/0 device. Up to 
three different data-table sequences, any one of which may be in any of the four tabular 
formats, may be saved for use by the display. To save laborious reprogramming, a 
load-or-dump option enables the operator to load previous definitions of named loca- 
tions and data-table sequences, or to save the existing definitions via a relocatable 
binary-dump tape. This option is especially useful when INFORM is used for pro- 
grams that have their named locations defined a s  being in common core. In this case 
programs may be updated and reloaded without having to redefine the INFORM names. 
As long as the common locations remain fixed, the dump tape may be used to tfteachll 
a new load the old definitions. 

In the interactive mode, the operator can issue a command and obtain an immediate 
response. In this mode the operator can define variable names, scale factors, and 
locations; display current values of named locations in octal, decimal, EU, or  other 
programmed formats; display the results of numerical calculations in either octal o r  
decimal; display, in EU's, ratios, or other algebraic combinations of named loca- 
tions; and alter o r  set named locations to given or calculated values. The sequentially 

The display may be one of five types. Four a re  tabular, and the fifth is single- 

Three modes of INFORM operation a re  possible, one interactive and two passive. 

9 



formed arithmetic expression (SFAE) as described in appendix B is the basis for nu- 
merical o r  algebraic calculations. 

A default-name (no name) option allows temporary definitions for display o r  per- 
manent alteration of any value in core. Alterations are made in a format that is con- 
venient to the operator as well as in the machine's inherent binary code, thus enabling 
program patches for debugging purposes. 

tr ip mode. Only one mode of operation may be in effect at a time. A change from the 
active mode to one of the passive modes o r  vice versa is accomplished by a sense 
switch, which is tested each time INFORM is entered and upon completion of a data- 
table printout. If the data-table printout is selected as the current passive mode, a 
data table is printed each time INFORM is entered. The data-table format and the 1/0 
device for this display may be specified when the program is in the interactive mode. 
Also in this mode, the operator may select the third or  variable-trip mode as the cur- 
rent passive mode. This mode will suppress a data-table printout until a specified 
named location becomes either greater than, less than, o r  equal to a defined t r ip  point. 
When the trip condition is reached, an optional computer halt, before the table printout, 
is possible. More detailed information on how to select and enter the different modes 
of operation is given in the Program Operation section. 

The two passive modes of operation are a data-table-printout mode and a variable- 

DATAO Subroutine 

DATAO is used to display the values of INFORM named locations on analog devices 
driven by system Dacs. The routine is designed for high-rate operation so that it can 
provide acceptable displays when used for transient data. Speed of execution on the 
SEL 810B is 5 microseconds plus 50 microseconds for each Dac written. Normally, 
DATAO is programmed to drive fixed-calibration recorders whose scale extremities 
correspond to inputs of 0 and +10 volts. To protect such recorders, output voltages 
a re  limited to -0 .1  and + lo .  24 volts by DATAO . The E U  values that correspond to 
these levels, as well as the named location to be assigned to any given Dac, o r  record- 
er, may be defined o r  altered when in the INFORM interactive mode. Hence, the oper- 
ator has the ability to expand, compress, shift, o r  reverse scales without having to ad- 
just recorder gains or repeat recorder calibration. 

channels. If less than 24 DATAO channels a re  defined, the unused channels are 
skipped, and no execution time is required for those channels. The maximum channel 
limit of 24 is a programmer's option and may be changed. 

A load-or-dump option is also available for the definitions of the DATAO display 

10 



SAMPLE Subroutine 

SAMPLE is a transient data collection routine that samples and stores values of 
INFORM named locations. Designed for dynamic data collection, its execution time is 
only 15 microseconds plus 24 microseconds per sample taken on the SEL 810B comput- 
er. The named-location values to be saved and the memory locations to be used to 
store the values collected are defined or altered in the INFORM interactive mode. The 
operator must also define the size of the storage blocks (i. e. ,  the number of samples 
to be saved for each variable) and an averaging parameter used for an optional data 
filtering mode. A relocatable binary-dump tape option similar to that provided for 
INFORM is available for these definitions. 

and stored each time SAMPLE is called by the main program. The operator specifies 
the variables to be sampled by defining SAMPLE channels; that is, by specifying a 
named location to be sampled and the location of a storage block to be used to save the 
samples. The length, which is common to all storage blocks, must also be defined by 
the operator. Each time the main program calls SAMPLE, it also supplies a sample 
number that indicates the relative location in the storage blocks to be used for storage. 
Each time SAMPLE is called, SAMPLE stores one sample for each currently defined 
SAMPLE channel in this relative location. If a sample number received from the main 
program exceeds the defined storage-block lengths, no samples will be stored, and the 
return to the calling program will be different to indicate that all samples have been 
taken. The main program may then use this information to stop the sampling process 
or to recycle. 

in its relative location, it is added to a summation value already stored in the relative 
location. This mode is intended for the averaging type of data filtering. The summa- 
tion values a r e  automatically divided by the number of points added together (i. e . ,  an 
averaging parameter supplied by the operator) when the sample values a re  output. The 
sampling mode is determined by the value of the averaging parameter defined by the 
operator. If the averaging mode is in effect, the main program, which calls SAMPLE, 
must also call CLRSMP to set the initial summation value to zero. 

be at least two times the number of samples to be taken. The extra locations a re  
needed to store the summation a s  a double-precision value. 

fixed formats on any available 1/0 device. The output includes a coded number to in- 
dicate the first and last variables dumped, the scale factors, the number of samples 
per variable, and the data in integer or floating-point format. When integers are out- 

In the simplest form of operation, one value for each specified variable is sampled 

Another mode of operation of SAMPLE is possible: Instead of storing each sample 

Lf averaging is being used, the storage-block length defined by the operator must 

The contents of any or all of the storage blocks may be dumped in either of two 

11 



put, they represent the scaled values; while the floating-point data a re  output a s  EU 
values. The formats provide for  convenient interpretation by the user and for interfac- 
ing with Fortran data-reduction programs. Lnteger valued checksums are  provided for 
each line of output. For further details consult the APPLICATIONS AND EXAMPLES 
section and the $1 and $2 command descriptions in appendix C (pp. 82 and 84). 

The operator may also scan data collected by SAMPLE by using an INFORM com- 
mand designed to list core. Details of this procedure are given in the APPLICATIONS 
AND EXAMPLES section. 

CLRSMP Subroutine 

CLRSMP is provided to set the values in all the SAMPLE-channel storage blocks 
to zero. It must be called to initiate the start of a new summation for the averaging- 
filter mode of SAMPLE. CLRSMP may also be called if SAMPLE is not in the averag- 
ing mode. However, it should never be called by the main program until the operator 
has dumped the sampled values in the storage blocks, a s  these values a re  destroyed by 
CLRSMP. 

PROGRAM STATISTICS 

Core Requirements 

Because different users will implement different portions of the program, the core 
requirements a re  broken down into convenient categories (table I, p. 14). Although the 
values shown a re  for an SEL 810B computer, they should be typical for any 16-bit, two- 
accumulator machine with index register. 

Calling Sequences 

The calling sequences given herein are  for the SEL 810B computer. The 810B is 
a 16-bit minicomputer with a maximum addressing range of 32 k words. It is a two- 
accumulator machine with index register and uses twot s complement arithmetic. Ad- 
dressing is either direct o r  program-counter relative. Infinite indirect addressing 
with either post- or  pre-indexing is available. Two-operand instructions always use 
an accumulator as one of the operands. Memory cycle time is 750 microseconds, with 
most memory referencing instructions requiring two memory cycles for execution. 
Use of indexing or indirecting requires one additional memory cycle for each indirect 
or indexing operation. Implied operand or single-register instructions require one 

12 



memory cycle for execution. When both indirect and indexing appear in the same in- 
struction, indexing is done before the indirect. 

The call to INFORM must be followed by a coded data word to indicate the type of 
format desired for passive-mode data table printouts. The meaning of the bits of the 
coded word a re  defined in figure 5. The least significant three bits of the word a re  an 
output unit number. The next most significant three bits are a data table number, and 
the least significant three bits of the bits remaining signify the type of format. Lf any 
of these three-bit values is zero, default values DFO, DF1, and DF2, as defined by 
the operator, are used for the format type, data table number, and output unit number, 
respectively. On program load or re-initiation of the program due to a definition-dump 
read-in error,  these default values a re  set to initial values. 

When SAMPLE is called, the hardware A accumulator must contain the sample 
number. The first location following the call is the abort return location used when the 
sample number supplied lies outside the currently defined storage-block length. The 
second location following the call is the normal return location. Whenever it is desired 

-- to clear the SAMPLE-program-storage blocks, simply call subroutine CLRSMP. 
There is no special calling sequence for DATAO. Simply call DATAO whenever it 

is desired to update the Dac display. 

Timing 

The times given below are  for  the SEL 810B computer. The execution time for 
SAMPLE in the nonaveraging mode is approximately 15 microseconds plus 24 micro- 
seconds per channel sampled. The averaging mode requires 16 microseconds plus 
36 microseconds per channel. The timing for CLRSMP is the same a s  for the non- 
averaging mode of SAMPLE. The time required to execute DATAO is approximately 
5 microseconds plus 50 microseconds per channel displayed. INFOFW. requires 
1 0 . 5  microseconds per named location to collect the data for a data table printout. A 
time lag of approximately 66 microseconds plus 18 microseconds per named location 
occurs between entry of subroutine INFORM and the start of data collection. 

DESCRIPTION OF PROGRAM OPEFUTION 

Certain definitions and conventions will be used when describing the operation of 
the program. For reference, these conventions a re  listed in appendix B . 

13 



16 - bit 
data word 

, 1 $at 0 1 2 3 4 1 5  6 7 8 1 9  

Da; ta;e ,Out;ut ;nil 
number number 

10 11 12 13 14 15 

Figure 5. - Format for coded data word used when 
calling INFORM to establish form of passive-mode 
data-table printouts. 

TABLE I. - CORE REQUIREMENTS FOR SEL 810 B SYSTEM 

INFORM: 
Main program and subroutines . . . . . . . . . . . . . . . . . . . .  776 
Command processors (excluding >, <, /, [, and ] commands) . . .  286 
Named location definition tables (250 names) . . . . . . . . . . . . .  1251 
D a t a t a b l e s . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
STOR (temporary storage buffer) . . . . . . . . . . . . . . . . . . .  174 
Defadt options and processors . . . . . . . . . . . . . . . . . . . .  384 - 

3050 
SAMPLE : 

Central command processors (< and > commands) . . . . . . . . .  208 
Channel definition tables (80 channels) . . . . . . . . . . . . . . . .  165 
SAMPLE subroutine . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
CLFGMP subroutine . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

429 
Command Processor common to  DATAO and SAMPLE . . . . . . . . . .  131 

- 

DATAO : 
Control command processor (> command) . . . . . . . . . . . . . .  200 
Channel definition tables (80 channels) . . . . . . . . . . . . . . . .  169 
DATAO subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 - 

409 
INPUT/OUTPUT subroutines: 

MESAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
OUTOO, OUT10. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
OUT11, OUT12, OUT22, OUT21, andOUT44. . . . . . . . . . . . .  243 
PUNCH, LOAD, VERIFY . . . . . . . . . . . . . . . . . . . . . . .  115 
TRYR, T T Y R 2 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 
FDDH, FDDEND, FDD11, FDD12, FDD22, FDD21, FDD44. . . . .  105 
INPT, AIP, AOP, AIPX, AIPRX, andAOPX. . . . . . . . . . . . .  93 

Fortran arithmetic and conversion - 
835 

. . . . . . . . . . . . . . . . . . . . .  519 
Grand total 5373 

14 



INFORM Mode Selection 

Mode selection is most easily understood by following the flow chart of figure 6. 
In general, the interactive mode may be entered at any time by setting the operator's 
mode-select switch (a sense switch). The passive mode may only be entered immedi- 
ately following entry from the calling program with the operator's mode-select switch 
reset. Entry of the variable-trip mode is controlled by the variable-trip-mode latch 
(VTLH), which is set or reset by interactive mode commands. The variable-trip mode 
will  not be entered until the INFORM subroutine is exited and re-entered with the oper- 
ator's mode-select switch reset and VTLH set. 

U s e  of Commands 

Generally, INFORM is run in the interactive mode with the user obtaining informa- 
tion from the program by issuing a command and observing the response. A command 
consists of a key character preceded and/or followed by substantiating characters 
called operands. For example, if we desire the current value for a parameter called 
SPEED, we would type 

SPEED= 

Here, = is the key character and the name Y3PEED" is an operand. If the operands 
follow the key character, they must be separated from the key character by a space or 
comma. A complete list of commands and an explanation of their operands and func- 
tions for INFORM, DATAO, and SAMPLE a re  given in appendixes C to E .  

Commands a re  separated into three groups : control-edit commands provided by 
INFORM, commands used to control the DATAO subroutine, and commands used to 
control the SAMPLE subroutine. The = command of the above example is an INFORM 
control-edit command. The operator always knows when the program is ready to ac- 
cept a command as it will print an underscore for control-edit commands, < for 
SAMPLE control commands, or > for DATAO control commands at the beginning of 
a new input line it creates by supplying a carriage return and line feed to the opera- 
tor's input console. This character is followed by the ringing of the bell on the con- 
sole. Assuming SPEED has a current value of 1500 rpm, the complete line for the 
preceding example would be 

The underscore is used throughout this report to indicate characters printed by the 
machine, thus separating them from operator entries. 

15 



The decimal value produced by the program is actually the EU value printed in the 
Fortran format of 5PE10.5 except that the decimal point, which occurs to the right of 
the five-digit mantissa, and the E a re  omitted. This format is used for all displays 
of decimal numbers, as it increases speed of printout on slow 1/0 devices and shortens 
line length for.cathode-ray tube (CRT) devices. Little readability is sacrificed since 
the beginning of the exponent can always be identified by the space o r  minus sign follow- 
ing the mantissa. The increased speed and shortened lines a re  especially beneficial 
when lengthy data table printouts occur. Hence, the above value is 1,500.0 If the octal 
value were being displayed, it would be indicated by an apostrophy preceding a six- 
digit octal value. These formats a re  characteristic of the OUT22 and OUT00 subrou- 
tines of the CIPHER 1/0 library (ref. 2), and hence may be changed accordingly. 

It is not always necessary to enter all operands listed for a command. Some oper- 
ands may be defaulted (omitted). Those operands that may be defaulted have default 
values listed under their description in the appendices. If the operand is defaulted, the 
default value wil l  be used. For example, if we wish to display the value of SPEED a 
second time, we need only type the l'='' key character, since the default value for the 
operand is the name operand used by the previous command, that is, SPEED. 

Thirteen of the default values of the various commands a re  modifiable by the user 
o r  operator. These defaults a re  identified as DFO through DF12. The programmer 
can alter them by changing the initial values within the INFORM software. The opera- 
tor can change them using the "%" change default value command. These default values 
a re  included on INFORM definition-dump tapes. Hence, the status of the defaults when 
the dump was produced will be restored whenever the dump is loaded. 

Commands are processed character by character but a r e  not executed until all en- 
tries have been received. This enables the user to maintain the status quo by cancel- 
ling the command before completion by entering lr#'' (ASCII '245). A successful can- 
cellation will be indicated by r ' ? r t  printed on the operator's console. If the operator 
types an erroneous o r  illegal operand, the program will cancel the entire command 
line and indicate same by typing "?'' on the operator's console. 

key character and, therefore, require a terminating character to indicate the end of 
the operand entries. This terminating character is a carriage return. If a carriage 
return occurs before the entry of all operands, it is assumed that the remaining oper- 
ands a re  defaulted. If no default value exists for one of these remaining operands, the 
l l ? r r  er ror  message is issued. 

factor (Sf) for SPEED had not been previously defined, the machine would have issued 
the e r ror  message "U ?Ir and cancelled the instruction. To be able to use SPEED a s  a 

Most commands, unlike the "=" command, have additional operands following the 

Defining named locations. - If, in the preceding example, the location and scale 

16 



name operand, it must have been previously defined using the "spacef1 define-redefine 
variable name command. Using the lTspace'f command on a variable name that has al- 
ready been defined invokes the redefine name processor and causes the subsequent new 
definition to replace the existing definition. 

To define a name using the "spaceff command, the name to be defined mLtst precede 
the "space" entry. A name must consist of from 1 to 5 of the 36 possible alphanumeric 
characters, with the first character being one of the 26 alphabetic characters. No de- 
limiter, such as a space or comma, is needed to separate the "space1* commands from 
its operands, as the machine will type a double asterisk or the word ffREDEFfl follow- 
ing the "space" to alert the operator that operands for a permanent name definition a re  
to follow. If the new name being defined is not unique, or is not the same a s  a name 
being redefined, an e r ror  message will be received, and the command will terminate. 
The e r ror  message lrQ?" indicates that the name-learning capacity has been reached 
and no new names may be defined unless old names a re  redefined. 

A typical line to define SPEED using the space command would look as  follows: 

SPEED **I 256,15000/32000 - -- 

Note that the above line was terminated with a carriage return. To define a name, 
entry of the location and scale factor corresponding to the name used must follow the 
double asterisk or 'fR,EDEF!f message (i. e . ,  SPEED). Once these entries a re  made, 
the name is properly defined and will appear on any subsequent relocatable binary- 
dump tapes. If one wishes not to proceed with the definition, the line must be can- 
celled by entering 't#'' before the carriage return. 

It may consist of any sequentially formed arithmetic expression a s  defined in appen- 
dix B. Lf a name occurs within the expression, the location, as currently defined for 
that name, is used as the numerical value. The only restriction is that the calculated 
value must be a legitimate core location. To facilitate the defining of names for suc- 
cessively increasing locations, the location entry may be defaulted by entering only a 
comma where the octal or decimal address would be. In this event the address is as- 
sumed to be one greater than the address defined for the last-used name operand of 
previous commands. When an address is defaulted, the calculated value is displayed 
to the operator before the acceptance of following characters. 

The address thus entered must be followed by the scale factor (Sf), which may 
consist of any sequentially formed arithmetic expression defined in appendix B. If a 
name occurs within the expression, the scale factor as currently defined for that name 
is used as the numerical value. The resulting Sf becomes the number to be used to 
multiply by a machine-stored number to produce the EU value. The use of the divide 

Of the two operands required to define a name, the location must be entered first. 

17 



option of the sequentially formed arithmetic expression facilitates the entry of frac- 
tions, such as, 100 percent per 2**(15) (the largest 16-bit word or 1s) o r  15 000 rpm 
per 32 000, where 32 000 counts a re  produced by an analog-to-digital converter for a 
10-volt input. These entries could then look like 100/1S and 15000/32000. If the value 
entered is zero, the scale factor is assumed to be one, and an octal instead of decjrnal 
display of the number is desired. 

To change a name, or to replace an existing definition with a new one, we proceed 
as before except that the old name must precede the lrspacell and the new name must be 
entered as the first operand. For example, 

SPEED REDEF REVS, '256,1000/32000 - ------ 
would redefine SPEED a s  the new name of REVS and change its scale factor to 1000/ 

32000. 
Notice that a core location may have any number of different names and scale fac- 

tors assigned to it. However, each name must have a unique location and scale factor 
associated with it. Storage for a maximum of 250 different names is provided, but it 
is a simple matter to change this to any value between 1 and 254. 

INEOFW interactive commands (appendixes C to E) and by the user's manipulation of 
the 1NFOR.M operating mode. Displays produced by DATA0 and samples taken by 
SAMPLE will, in general, also be under some form of control provided by the calling 
program. This procedure is illustrated in the section Applications and Examples for a 
typical operating system. The displays and manipulations provided by the INFORM 
software a re  described in the next section. 

2, o r  3) gets printed is determined by the INFORM operating mode. These modes 
were previously described and illustrated in figure 6. The table number, format type, 
and unit used for passive-mode printouts are governed by the coded data word (fig. 5) 
following the INFORM calling statement and the values of defaults DFO, DF1, and DF2. 
If the format type supplied by the coded data word is zero, DFO will be used a s  the for- 
mat type. In this event, if DFO is not one of the four defined types of format (0, 1, 2, 
o r  3), an e r ror  will  occur and the program will revert to the interactive mode. A sim- 
ilar situation exists for the data table number and DF1. Default value DF2 will be used 
as the unit number whenever the coded data word supplies a unit number of 0. If print- 
out is initiated in the interactive mode, the operands of the "form" command supply 
these parameters. 

Format 0 is designed for computer to computer communication dumps. It is identical 

Data input and output control. - Data input and output a r e  controlled through use of 

Data tables. - When and how any of the three data-table sequences (data tables 1, 

An  example of formats 1, 2, and 3 for displaying data in tables is given in figure 7.  

18 



INFORM 

I & 

I n p u t  operators 
mode select / switch / Enter passive Enter in teract ive 

I 
I 
I 

The variable- 
trip-mode is 
now in effect 

I 
I 
! Mode select 1 

Passive swi tch Status Active 

Operator inputs  
commands 

Execute 
command 

Decode 
commands 

The variable- 
trip-mode is s top 
now in effect 

' 'Ex i t "  

Gather and p r i n t  
data for  the 
selected data table 

I n p u t  operators 
mode select 
swi tch 

- c select 
swi tch Passive 

Execute 
command 

I 

( RETURN 

: t - _ _  

Figure 6. - M a i n  f l w  d the INFORM p r q r a m .  

19 



K 1  K2  
ERROR S E T P  S P E E D  I T G R L  VCMD T A C H  MOTOR 

K1 = 62500-05 K2 = 66732-08 
ERROR = 18311-04 S E T ?  = 15088-01 S P E E D  = i5070-01 VCMD = 10031-04 

62500-05 66732-0 
91553-05 15088-01 15079-01 16028-04 10022-04 75394-02 15033-01 

- ~ 

Data table format type 1 

62500-05 6 6 732-0 8 
18311-04 15079-01 15060-01 16030-04 10031-04 75302-02 15047-01 

_ _  

Data table format type 2 

Data table format type 3 

Figure 7. - Typical examples of data table p r i n t o u t  formats. 

20 



to the $2 dump format used for dumping SAMPLE data and is described in appendix C. 
In the type 1 format, a heading is printed first, then the data. In the type 2 format, 
only the data are printed. In the type 3 format, the variable name is printed, followed 
by an equal sign and the data. Note that for formats 1 and 2, each variable takes up 
1 0  spaces of the line, while in format 3 each one requires 18. If an attempt to print an 
undefined data table is made, an e r ror  message will be issued, and the program will 
immediately revert to the interactive mode. 

occurrence of any blanks within a given table a re  set by the operator. Three data-table 
sequences a re  provided and are referred to as data tables 1, 2, and 3 .  To define or 
alter one of the three stored data-table sequences, the data table being modified must 
first be in the open condition by applying the l l @ l l  or T1(fl command. Only one table may 
be open at  any one time. Once open, the names, line-terminators (carriage-return- 
line-feeds), or blanks may be added using the ' I ,  I t  and commands. The last line of 
the table may be removed using the " 9 "  command. Once set, the named-location vari- 
ables in a table will remain fixed unless a given name is redefined with the lfspaceff 
command. The new named-location subsequently defined will then replace the old 
variable in the table. 

A named location may occur any number of times within a table or tables. How- 
ever, each occurrence will count a s  an entry in the table. Line terminators and blanks 
also count a s  entries. Up to 200 entries for table 1, and up to 86 entries each for ta- 
bles 2 and 3 are  allowed. These values, however, may be increased or decreased by 
a simple program change. 

accidental modifications. Appendix C, as well a s  the APPLICATIONS AND EXAMPLES 
section should be referred to for a clarification of this procedure. 

To minimize data skew between variables, the program gathers the current values 
for all the named locations of a data  table at a fast rate before the table printout. For 
the SEL 810B this rate is 10.5 microseconds per point. An additional time lag (ap- 
proximately 66 psec plus 18 psec per point for the SEL 810B) occurs between the issu- 
ance of a printout command and the time the first data point is fetched. Hence, to be 
time consistent, the values in core need be constant for only a short time immediately 
before a data table printout. 

The number of variables printed on each line of a data table, their names, and the 

Once completed, a data table should be closed using the command to prevent 

DATAO Displays 

As previously described, updating of the display produced by the DATAO subrou- 
tine is governed by the main program and the operating environment established by the 

21 



programmer. Thus, the operator has no control over how the display is produced, but 
he does have ful l  control over what is displayed. This control is obtained by entering 
the DATAO control command processor of the interactive mode. This routine is en- 
tered from the normal INFORM control-edit command-acceptance routine by using the 
> INFORM control-edit command. The program will return > instead of the under- 
score to indicate readiness to accept DATAO control commands. A return from this 
routine to normal 1NFOR;M control-edit command acceptance is accomplished using the 
underscore DATAO control command. The DATAO subroutine control commands are 
listed in appendix D. 

24 channels available a re  labeled 0 to 23. Assigned to each channel is a single named 
location, two EU values representing zero and full-scale outputs, an output unit num- 
ber, and a Dac channel number for the output unit. Two operands are used to define 
a Dac because both a unit number and the Dac number a re  required for the SEL 810B 
system. Other systems may require only one of these parameters. This determina- 
tion must be made by the INFORM programmer. All of these values for each channel 
must be defined by the operator before a display of that channel will occur. Only unit 
and channel numbers corresponding to system Dacs are accepted. Channel numbers 
must be defined sequentially, but, once defined, they may be modified, but not deleted, 
at any time. Only the highest number channel may be deleted. 

rameter, we would proceed as follows: 

Displays from the DATAO subroutine are referenced by channel number. The 

For example, if we desired to create several DATAO displays of the SPEED pa- 

> - 
- > A  ---- 00 SPEED,-15000,15000,'60~O 
- >A ---- 01 ,10000,11000,'50,0 
>A 02 ,0,15000,'60,1 - ---- 
>A 03 ,3,-15000,'60,2 - ---- 

Here, we have created four channels to display SPEED. Notice the good use of the 
name-default option when defining channels 1 to 3. Thus, Dacs 0, 1, and 2 of Dac 
unit '60 have been assigned to DATAO channels 0, 2, and 3. For the example system, 
these Dacs are  physically connected to strip-chart recorder channels 0 ,  1, and 2 .  
Since these strip charts a re  always calibrated to linearly display 0 volt on the left 
and 1 0  volts on the right, the strip chart will  linearly display SPEED in rpm. Strip 
chart 0 will display the full  range of possible speeds from -15 000 to +15 000 rpm, 
negative speed being defined a s  opposite rotation from positive speed. Strip chart 1 
will  display only positive speeds, and strip chart 2 only negative speeds. Notice that 

22 



we have flipped the axes on this chart so that negative speed dynamics will look the 
same a s  positive speed dynamics. 

around 10  500 rpm. To observe this region in detail, we have chosen to assign Dac 0 
of unit '50 to DATAO channel 1. This Dac is physically connected to an X-Y recorder 
whose X axis is synchronized to a transient generator being used to evaluate the dy- 
namics of our system. Since this display will overwrite itself, the change in transient 
behavior as system parameters a re  changed can be seen immediately. Using INFOFtM 
as shown above, this device was calibrated to display only values between 10 000 and 
11 000 rpm, thus greatly improving the resolution and readability in the area of inter- 
est. Should interest later shift to some other area, such a s  the transition through 
zero, the X-Y recorder could be recalibrated by simply changing channel 1 to 

For this particular example, an area of interest might be the dynamic behavior 

- >C1 SPEED,-1 00,100, ' 60,O 

Since everything except the calibration remains the same, extensive use of defaults 
could simplify the entry to 

>c1 ,-100,100 - 
This shortened entry saves time and helps keep our concentration on the area of inter- 
est, namely, control performance, not Dacs and displays. 

Notice that if time was  available inside the computer as an integer-valued variable, 
this time parameter could be used to drive the X axis of the X-Y recorder. In that 
case we could connect a system Dac to the X axis, calibrate the recorder X axis for 
0- to 10-volt operation, and define an appropriate DATAO channel. 

EU values to calibrate the display. Generally, they a re  of sufficient latitude to be of 
no concern to the user, but an explanation of the process used by DATAO to produce a 
display may prove enlightening. 
value (MAX) a s  the biggest EU value that can be scaled into a 16-bit, binary word; that 
is, 

There a re  some restrictions and considerations associated with the selection of 

For the ensuing discussion, define a maximum EU 

Let W be the EU value of a 0-volt output and X the EU value of a 10-volt o r  full- 
scale output. 

producing the display. These restrictions are 
Restrictions are necessary to prevent overflow of the integer arithmetic used when 

23 



and 

MAX< IW( 

Failure to meet these restrictions will result in the e r ror  message "SPOF" and a ter- 
mination of the command. 

A point to consider when selecting W and X is the accuracy of the display. Be- 
cause of the integer arithmetic used, accuracy may suffer, depending on the scaled 
values of W and W - X. The operation performed by the program is a s  follows: 

Number output to the Dac = [ (v - y'> + 4 2 ~ 3  

where V is the scaled value of the output variable and K1 and K2 a re  defined as 

K1 =- lo sf x 4  x rK3 
X - W  

a = -  K1 X W  
4 xSf 

The K 3  is selected by the program such that 

and has the restriction that 

-15 < K3 < 15 

This mathematics produces the desired output which is 

v - w  output as a fraction of 10 v = 
(X - W) 

The V - K1 multiplication is 16- by 16-bit integer for a 31-bit product. The K2 
is a 31-bit constant, and the 2K3-multiplication is performed by a full  arithmetic shift 
followed by a truncation to 15 bits. A more detailed analysis of this arithmetic is 
given in the PROGRAM STRUCTURE section. 

mostly on the values of K2 and zK3. The 2K3 shift will effectively truncate when 
Since K1 is held between 214 and 215, the accuracy of the calculation depends 

24 



K3 is less than 0. Hence, the accuracy of K2, or the offset voltage, will be poor if 
W/4Sf becomes too much smaller than 21 K31 . The absolute value of K3 will become 
significantly negative as I W - XI approaches 32 x MAX. Therefore, the poorest ac- 
curacy occurs for small magnifications (large W - X) of the signal around zero. Be- 
cause of this, recorders having l volt as ful l  scale should not be used directly by set- 
ting IX I at 1 0  times the desired value. Instead, a times-10 attenuator should be used 
ahead of the recorder. 

SAMPLE Subroutine Control 

The SAMPLE subroutine operates in a fashion similar to DATAO; that is, the 
main program and operating system determine when samples are taken, but what is 
sampled is controlled by the operator. The operator, however, can only select items 
for sampling that the system has stored in core; that is, he cannot control analog-to- 
digital converters or similar 1/0 devices. 

The SAMPLE control-command processor is entered from the normal INFORM 
control-edit command processor by using the < INFORM control-edit command. The 
program will return a < sign &stead of the underscore to indicate a readiness to ac- 
cept SAMPLE control commands. A return from this routine to normal INFORR/I 
control-edit commands is accomplished using the underscore SAMPLE control com- 
mand. The SAMPLE control commands are listed in appendix E.  

The command structure that controls SAMPLE is identical to that for DATAO. 

Variables sampled by the SAMPLE subroutine a re  assigned channel numbers from 
0 to 79. Also assigned to each channel is a starting location for the core storage block 
to be used to save the samples for that channel. The length of the storage block is the 
same for all channels. This length must be set the first time the SAMPLE control- 
command processor is entered after a program load. The operator can accomplish 
this by using the B block-length definition command. (See appendix C. ) The operator 
must also convey to the program whether his system is programmed to use SAMPLE in 
the averaging or nonaveraging mode. He does this by using the B command and spec- 
ifying an averaging parameter in addition to the block storage length. If this averaging 
parameter is 0 or 1, SAMPLE will operate in the nonaveraging mode. If the system 
does use averaging, the operator must indicate the number of averages for each read- 
ing the system takes. 

Programmers will want to refer to the programming section for details on how to 
interface SAMPLE to his system and how an advanced system can automatically switch 
from averaging to nonaveraging operation or  vice-versa, depending on the averaging 
parameter entered by the operator. 

25 



The operator is also responsible for defining the storage area for the samples. 
He must do this for each channel by using the A o r  C commands. The size of the 
storage area needed will  depend on (1) the number of samples taken for each reading, 
(2) the system averaging mode, and (3) the number of channels defined @.e. , the num- 
ber of named locations being sampled). Items (1) and (2) affect the block storage 
length that the operator should have defined with the previous B command. The block 
length should equal the number of samples per reading for nonaveraging and twice this 
number for averaging. 

For example, consider a system in which a reading consists of a single transient. 
If we wish to sample the transient data by taking 100 samples spaced 0 . 1  second apart, 
we would define a block length of 100 and the number of averages as zero. The 0.1- 
second spacing is beyond the control of the INFORM software, a s  this value would be 
determined by the system established by the programmer and the manner in which 
SAMPLE was called; that is, the system would have to provide independent means to 
initiate transients and change timing. 

If the system is intended for averaging operation and produces 1 6  identical tran- 
sients that a re  to be averaged to produce a mean transient, we must double the block 
length to 200 and define the number of averages as 16.  The extra block length is 
needed by the program to store the 16  values received for each channel as  a double- 
precision integer sum. 

The following is an example of how to define a SAMPLE channel 
that is to take 100 points of SPEED in a system not using averaging: 

for a transient 

Note that the B command is used to define a block size and number of averages before 
we proceed. If we decide to change these numbers at a later time, the B SAMPLE 
command will have to be reissued. This B command should not be used carelessly, 
however, since changing the block length may invalidate the starting storage location 
defined for the channels. Also, changing the number of averages may affect the $1 and 
$2 INFORM commands used to dump the sampled data. The user  should carefully read 
the descriptions and warnings listed for this command in appendix E .  

proceed a s  follows: 
To add more variables, say, ANGLE and TACH, to the list of SAMPLE channels, 

26 



Note the good use of the starting storage location default option to keep track of stor- 
age. 

transient 16  times, the procedure is 
To repeat the above example for a system that uses averaging and repeats the 

' 41 130 
9 ,  -------- <A 02 TACH - ---- 

< I' I 1  - -  

Note that, since an average is being computed instead of a simple store, each sample 
requires two storage locations. We, therefore, defined the block size a s  100 x 2 o r  
200. The effect of the block length increase is seen whenever the program displays the 
next available location. These differences must be taken into account when using the 
B command to change block lengths and number of averages, a s  issuing the B com- 
mand will not automatically redefine the storage location of all channels. 

APPLICATIONS AND EXAMPLES 

Potential application for  the INFORM software is limited only by the imagination 
of the user .  The following simple example illustrates a typical manner in which 
INFORM is used. Assume that the system consists of an analog simulation of a motor 
and tachometer pair whose speed is controlled digitally by a 16-bit minicomputer. (A 
block diagram of the system is given in fig. 8, and the flow chart of the digital program 
is given in fig. 9 . )  A dual-channel oscilloscope is included in the system to demon- 
strate the speed of execution of the program. By writing Dacs 1 and 2 to different 
levels at various points in the program, computer operation can be observed as it 

27 



I in t i r rup t  I 

0 
Direct memory Analq-to-digital - 
access controller 
(DMA) (ADC'S) 

converter channels 1 < 

- 

Interrupts 
(level 0 = highe! 
priority) 

Sensed speed 

16-bit 
mini computer 

converters lIl0 
units'50and 

switches 

H 

7 

7 - 
9 

Paper tape 
punch 
(IlO unit 5) 

Paper tape 
reader 
(IIO unit 6) 

Line printer 
(IIO unit '20) 

I- 

- _- 
Analog computer 

Speed command 

Ref 
Setpoint 
command 

Attenuator 

Step generator 

Dual channel Option 
mcilliscope to monitor 

I D i q i t a I  to ' system timing 

I 10 

strip-chart 
recorder 

1 
CRTl keyboard 
( I lO  devices 1, Zl 

Figure 8. - Motorltachometer speed control system of example problem. 

28 



I 

"NOTE: Sense switch H is operators 

interrupt 
structure 

Initialize 
system 

Enable 

Calculate control 
command voltage 

1":k INFORM+ 

I 
mode select switch 

I 

Interrupt 
level 0 

machine 
state 

Start DMA to 
read ADC'S 41 I-' into SETP, speed 

VCMD = K4.mGRL 
+ K5.ERROR 

Update timing 
display 
DAC 1 = t1.OV 

Restore 
machine state 

interrupt 
level 1 

machine 
state 

I 

l l  i -  

Integrate ERROR 
ERROR ITGRL = ITGRL t - 8 

1 J 

Write DAC 0 

RETURN 

(-7J 

Restore machine 
state 

Update timing 
display 
DAC 1 = 0.OV 

C i . 0  switch B set 

I , &Yes , / display Update timing /-{-I 
DAC 1 = 2.OV 

Interrupt 
level 2 

machine 
state 
I 

LI 

CLRSMP 

storage blocks 

I 
Update timing 
display 

SAMPLE 

Save sample 

Increase sample 
counter 

N = N + I  

Update timing 
display 
DAC 2 = 0.OV 

Restore machine 
state 

0 RETURN 

Y 

All-samples- 
taken return 

- 
Figure 9. - Flw chart for computer prqram of example problem. 



steps through a typical update cycle. Figure 10  shows a typical trace where DATAO 
and SAMPLE are  setup for five channels. 

In this example, much of the INFORM software is exercised. Hence, in addition 
to acquainting new user's with the program, this example can be used a s  a test proce- 
dure for those wishing to validate their software. To eliminate confusion, operator- 
entered carriage returns are shown herein as " J  ?'. The commands we will be using 
are listed in detail in appendixes C to E and a re  summarized in appendix 1. 

The first step is to define the digital program variables. This is done using the 
INFORM space command: 

Notice that various default options have been used to indicate that ERROR, SETP, 
and SPEED have the same scale factor and are located in successive memory locations. 
Since these variables a re  in the common core and will not change a s  the program is up- 
dated, we have produced a binary-dump on the paper-tape unit (DF9) so that the next 
time the program is run the definition process will  not have to be repeated. 

responded: 
A s  a result of issuing the ! command, the paper tape was punched and the machine 

VERIFY? YJ  -------- 
We replied, IrY, If after mounting the tape just  produced onto the paper tape reader 
(DF10). 

We should now like to observe the problem in operation. To do so, the strip-chart 
recorders will be used. Before they a re  used, they should be calibrated to operate be- 
tween 0 and 10  volts. To do this a calibration voltage is needed. There is no better 
source for such a voltage than the DATAO display system. In fact, if DATAO is used, 
the user need not remember that the system uses 0 and 10  volts, nor worry about Dac 
counts per volt, etc. He need only consider zero and full scale. To generate a cali- 
bration signal, dummy variable X is defined, and DATAO is set up to display X on 
all channels. By using the INFORM scale and store command, the value of X can be 

30 



:Start sampling i npu ts  
; ( in te r rup t  level 0) 
I -Start  con t ro l  a lgor i thm I 

( i n t e r r u p t  level 1) 

v) ,r Output con t ro l  r Exit i n t e r r u p t  
,I' level 1 0 

~ ~~. __ - ,/' command 

r 1st D;O ~ I,,, j' 
a I c h a n n e l  out 

I 
I r 2 n d  r 3 r d  -4 th  ,,-5th DATA0 

n 
Enter DATAO-' 

1 -  channe l  out 
-1 

r Enter SAMPLE / ( i n t e r r u p t  level 2 )  

i 
r l s t  SAMPLE 

I /  I ; ; c h a n n e l  stored 
/ .A _ _ ~  - > 

I 

r 4 t h  
, c 5 t h  SAMPLE 

I I I c, channe l  stored 
,-Return to INFORM - -2' -- 7 

L 

Processing level 1 i n t e r r u p t  
n 

375 390 465 
I 1  I 1  1 1 I I I 1 1 1 1 l _ l I  , 
015  5570 123 175 225 275 325 380 415440 475 

Approximate t ime from start  of update cycle, p e c  

F igu re  10. - Scope display showing digital program t im ing  for example problem. 

31 



changed and thus cause DATAO to generate a known display anywhere between zero and 
ful l  scale. 

The procedure is a s  follows: Location '500 is unused by the program, so it can be 
usedfor X. 

- X -- **' 500,1/32OOOj 

Now set X = 0. 

Notice that we have chosen full  scale of X = 1 to correspond to 32 000 counts. Using 
32 000 gives sufficient resolution in setting X (i. e . ,  1 part in 32 000) ,  yet is not so 
large that 1 will not fit into our 16-bit machine (32767 being the maximum integer 
value). Any value could have been chosen, except that, if we had defined X a s  being 
1/lS, a problem would have arisen because 1s does not f i t  the machine; that is, X 
would always have to be a fraction. Thus, an e r ro r  message would be received if an 
attempt were made to set X = 1 . 0 .  

The DATAO channels will now be defined. The Dac unit connected to the display 
is unit '60. 

We  now adjust the recorder's offset to display zero, then return to the INFORM com- 
mand mode so we can set it for full scale and adjust the recorder gain: 

XI' '000500 WAS= '0000000 1 ,NOW= '076400 - ....................... ------------ 
The recorder's sensitivity is now adjusted to display full  scale. 

problem. Using named locations, the variables SETP, ERROR, SPEED, ITGRL, and 
VCMD will be assigned to Dacs 10  to 14, respectively: 

With the calibration complete, the recorders can now be set up to display our 

32 



Note that typing has been saved by defaulting the Dac unit and Dac numbers. This can 
be done because these values were defined when the calibration procedure was per- 
formed. 

The first portion of figure 11 shows the resulting display. This display indicates 
that the system is unstable. Obviously, K4 and K5 were chosen poorly. The system 
should be stable. To locate the problem we will check K4 and K5 for proper scaling. 
They should be 3.0 and 2.0/3000.0, respectively. Since K4 and K5 are  not in the 
common core, we wil l  use the power of the sequentially formed arithmetic expression 
(SFAE) to define their addresses. To do this, the variable X is redefined as  having 
the relocatable load address ('1045) of the control algorithm program. Then the as- 
sembly listing address of '100 for K4 can be used as  follows: 

- X ---_-- R E D E F  ' 1 0 4 5 , O j  

- K4 -- **X+' 100 ,VCMD/ ITGRL* I  /I B4j 
- K5 9 3  --------- I 001 146 VCMD/ERROR*l /l B 5 j  

Since K5 follows K4, the K5 address was defaulted. 
manipulation used for K4 and K5. Since K4 converts ITGRL scaling to VCMD scaling, 
VCMD/ITGRL (the ratio of the scale factors) was used in the scale-factor definition. 
To f i t  reasonable values of K4 into an integer value, it was necessary to further scale 
K4, hence, the factor l/lB4. The program compensates for this additional scaling by 
an arithmetic left shift of four after the multiplication. (See the control equation in 
fig. 9, p .  29 .) Similar reasoning applies to the K5 scale factor. 

Note also the fancy scale-factor 

W e  will  now display K4 and K5. 

33 



E 
L 

d 
E 

E 

i 
CL L 

0 L 
L W 

E 

d 
n 

e 
W W 

v, 

2 
E 

E 

VI L 
0 > 

d 
5 > 

500 

0 

-500 ~. 

loo0 

0 

20 30 
k K 4  = l 0 . 0 L K 4  = 3.0-4 

Time, sec 

Figure 11. - DATA0 traces for example problem showing effect of K4 change on 
system. K5 = 6.667~10-~. 

34 



We had intended K4 to equal 3 .0 ,  but it must have been entered improperly when scal- 
ing K4 for the program's data statement. The problem can easily be fixed by 

Figure 11 shows the result of this change. Notice that the control program keeps run- 
ning while we are making changes. 

The resulting system response is nice, but could be better. INFORM and DATAO 
can be used to find more optimum values. Let's increase K5 by a factor of 10 .  

K5" '001146 WAS= '002000 K5*10 .'------------ NOW= '024000 - ...................... 
Notice how the SFAE simplifies increasing or decreasing by factors. The resultant 
trace is shown in figure 12.  It is now obvious that the scales for the SPEED (channel 2) 
and ITGRL (channel 3) traces can be expanded to make them readable. This is accom- 
plished as follows (with fig. 13 as the result): 

We will now get a listing of what the revised channel definitions are and save them 
by means of a relocatable binary-dump tape. The ? DATAO command is used: 

The display for the channel definitions shows us first the channel number, then the 
DAC unit number, the DAC number, the named location, the E U  value at 0 volt, and 
the EU value at 10  volts, respectively. 

built by 
Next INFORM is used to generate some steady-state data. First, a data table is 

35 



w 
m 

d 
5 > 

lo00 

0 

-loo0 
4 

0 

-4 
5 

0 

-5 
0 5 10 15 20 25 

Time, sec 

Figure 12. - DATAO traces for example problem with K4 
and K5 optimized using INFORM. K4 = 3.0, K5 = 

6 . 6 6 7 ~ 1 0 - ~ .  

E e 

0 
500 

0 

E e 
-0- 
W m CL 

m 

500 

0 

-500 
.25 

VI = 0 > 

d 
3 

-. 25 
5 

0 

> ~ l i - - l i i t l  1 , I J I I I r- -#-- 

- -  

0 5 10 15 20 25 
ci ' 1 1 1 1 ' 1 1 ' ' ' ' I ' ' ' ' 

Time, sec 

Figure 13. - Scale-expanded DATAO traces for example 
problem with K4 and K5 optimized using INFORM. 

-5 



The form command could now be used to print each update of the table as we 
change the set points that generate the steady-state data. However, to illustrate the 
passive mode use of the program, a different procedure will be followed. Set the op- 
erator's mode-select switch (sense switch H) for passive mode printouts. Note that 
the passive mode will not be entered until INFORM is left or a data table is printed 
(see fig. 6 ,  p. 19) .  We will now set DFO through DF2 to set up the passive mode print- 
out to print data table 1 in format 2 on the line printer (unit 5): 

The table is started by printing the first point, complete with heading: 

-\  1 3 1  y 5 J  

Since the operator's mode select switch was set for passive mode, the INFORM sub- 
routine was exited on completion of this printout. The system sense switch G is now 
used to control the entry of INFORM, since each time INFOFUU is entered a new line of 
data will be printed in the table. Before each printout, we will change the setpoint 
(SETP), then momentarily pulse sense-switch G to enter INFORM and print one data 
table line. Figure 14 is the result. 

(ERROR) is excessively large. We will re-enter INFORM'S interactive mode to exam- 
ine the problem. First ,  the operator's mode select switch is set to the interactive 
mode; then system sense switch G is reset to enter INFORM. 

VCMD, we will use INFORM'S variable-trip-mode option to attempt to catch an over- 
flow just before it occurs. We will set the trip to occur when VCMD exceeds 9 .8 .  

The last line of the table reveals a serious problem: The steady-state e r ror  

Suspecting that the problem is caused by a temporary overflow when calculating 

37 



!:::::I 
F pP( It-' ............. 

Figure 14. - Pr in touts  produced f o r  the  example problem 
steady-state points generated by INFORM working i n  
passive mode. 

38 



Since the halt option has been declined, a printout of the data table will occur each time 
trip occurs. For readability we can print the heading on our table by setting DF1 for 
printout in format 1: 

Now all we need do is exit INFORNI to initiate the variable trip mode: 

Note that system sense switch G must be kept on reset so that INFORM is entered 
repetitively. This is necessary so that INFORM can test each update cycle for the trip 
condition. After putting some disturbances into the system, figure 15 results. The 
system has been caught in a malfunction mode. A user could now use the halt option to 
stop the program; and then use INFORM or a suitable debug procedure to locate the 
defect. Stopping execution on the cycle that caused malfunction eliminates needless 
probing of cycles that operated correctly. 

Details of program repair a r e  left to the reader. To terminate the variable trip 
mode, the operator's mode select switch is set to interactive mode. Once the under- 
score is obtained, the following command is issued: 

To complete the exercise of the INFORM software, SAMPLE will be used to cap- 
ture a typical system transient. One hundred points will be collected for a single tran- 
sient; that is, the averaging mode will not be used. We now enter the SANIPLE com- 
mand processor: 

after which the first item should be to define the block size and number of averages: 

Then, the channels are defined. Core starting from location '40000 will be used to 
save the samples: 

39 



Figure  15. - P r i n t o u t s  produced f o r  t he  example problem 
by INFORM generat ing i n  v a r i a b l e  t r i p  mode. 

F igure 16. - Disp lay  o f  data c o l l e c t e d  by subrout ine  SAMPLE. D isp lay  was 
produced us ing  t h e  INFORM "/" l i s t  core command. 

40 



<A 00 ERROR, I 40000, -------- I 0401 44 
- <A --- 01 S P E E D ,  ,-1_0_4_0_31_0 
- <A --- 02 I T G R L , , - ; C 4 _ 0 4 5 4  
- <A --- 03 VCMD, ,-~_0_4_0_6f21) 

- --- 

,I' - I' J 

System sense switch A is used (fig. 9, p. 29) to start collecting data. Since the 
100-hertz system clock patched into interrupt level 2 is also the system update clock, 
a sample will be taken after each update cycle. It will then take 1 second to sample the 
100 points. W e  can use timing DAC2 to initiate a transient so that the disturbance can 
be synchronized with the samples. Since we do not want DATAO to interfere with the 
taking of the samples (fig. l o ) ,  system sense switch B is reset to suppress the DATAO 
display. To display the data collected on the line printer (unit 5) do 

However, as  explained under the $1 and $2 command descriptions in appendix Cy these 
printouts a re  not really intended for operator reading. (The $1 and $2 printouts a re  
also shown in appendix C . ) The INFORM / list core command can be used to see the 
sampled data. To use this command to view the samples from SAMPLE channel 1, we 
first note that these samples start at location '40144. Lf one forgets where the SPEED 
samples were stored, the ? display SAMPLE definitions command can be used to sup- 
ply this information: 

-' J 

BLOCK S I Z E =  00100 
# AVERAGES= 00001 

- > ?  1, 

----------------- 
----------------- 

00 ERROR '040000 '040144 
01 S P E E D  '040310 '040310 
02 I T G R L  '040620 '040454 

03 VCMD '041130 '040620 

............................. 

............................. 

............................. 
--------------_-----____y____ 

Furthermore, it is usually desired to descale the values before they are listed. The 
SPEED scale factor should be used. Hence, the command issued is 

- / ' 401 44, I401 44+100,1 , S P E E D , 5 ,  

The display is shown in figure 16. 

41 



Had we been using SAMPLE in the averaging mode, we would note that the data 
would be stored by SAMPLE as double-precision integers. Furthermore, it would 
represent the sum of the number of averages taken. Therefore, the number of aver- 
ages should be included in the scale factor to divide it out. For example, assuming 
that channel 1 starts at '40310 and that 16 averages a re  taken, the command to dupli- 
cate the above printout would look like this: 

- / ' 40310,' 40310+200~6,SPEED/l 6,5j 

PROGRAM STRUCTURE 

The program contains several subroutines that perform specific functions required 
by the various commands. Some of these subprograms are part of external supportive 
software packages required to implement the program. These external routines con- 
sist of floating-point arithmetic routines, 1/0 routines which input and display octal/ 
decimal o r  integer numbers and, 1/0 routines that produce and read relocatable binary- 
dump tapes. The math routines a re  usually supplied with most machines as part of the 
Fortran library. The special 1/0 routines are described in appendix F . 

INFORM Structure 

The program retains the information defining the named locations in parallel ta- 
bles. The table position of the named location in use by the command is called the 
"indexing variable. '' This indexing variable is always maintained in the INDX location. 

The address of the named location is stored in the LOC table, and the name itself 
is stored in two tables called NAMl and "2. The name consists of five, 6-bit trun- 
cated ASCII characters which constitute a 30-bit word length. The least significant 
16  bits a re  contained in NAM2, and the most significant 14 bits a re  in the least signifi- 
cant 14 bits of NAMl. The most significant two bits of NAMl are  maintained a s  zeros. 

The scale factor assigned to the named location is saved in table SF as a 31-bit, 
single-precision, floating-point, real value. The format used is consistent with the 
standard arithmetic software supplied with the SEL 810B computer on which this pro- 
gram was developed. To avoid the overflow and underflow problems of integer arith- 
metic, calculations which involve E U  values a re  performed using floating-point, real- 
arithmetic software. 

42 



Information for  the three different INFORM data-table sequences is stored in 

TABl, TAB2, TAB3, and LGTH, where TABl, TAB2, and TAB3 are  format tables 
which correspond to data tables 1, 2, and 3, respectively. By being matrices of index- 
ing variables, they indicate which named locations are to be displayed and in what posi- 
tion. TABl is 100 locations long and can contain 200 indexing variables at two per 
word. TAB2 and TAB3 each contain 43 locations and can contain 86 indexing variables. 
An indexing variable of 255 ('377) denotes a line terminator for a line of the data table, 
and an indexing variable of zero indicates that a blank space is to be placed in the data 
table output. 

This routine cancels the command in progress and returns to the beginning of the cur- 
rent command processor by using the RTRN location. RTRN contains a program ad- 
dress and is set at various places in the program to establish the point where this er- 
ror processor should return. RTRN also serves a s  the return address for the com- 
mand processing routines, thus making them independent of the command decode se- 
quence used to enter them. RTRN is set by executing a store place and branch (jump 
to subroutine) to RTRN followed by an immediate "branch indirect" to RTRN (return 
from subroutine) instruction. This method was used because it is the only way to save 
the program counter on the SEL 81OB, a necessity when implementing a dynamic un- 
conditional jump instruction. The EROR and command processing routines then simply 
execute a branch to the address in RTRN. 

Operator e r rors  a re  processed by branching to a common routine called EROR. 

Program Flow Char t s  

The structure of the INFORM software can be easily understood by referring to the 
flow charts of appendix G .  Subroutines contained with the INFORM software have a 
separate section for  their flow charts in this appendix. Descriptions of the functions 
of all the subroutines used a re  contained in appendix H. When subroutines a re  encoun- 
tered in program flow, a brief description of the essential functions being performed is 
given in the block to ease reading of the flow chart. It should be pointed out, however, 
that other essential functions may also be performed by the subroutines. The reader 
should refer to the particular subroutine flow chart to ascertain its complete operation. 
The variable arguments supplied to and received from a subroutine a re  shown in paren- 
theses by the ENTER and RETURN statements. The definition of these arguments is 
clearly spelled out within the subroutine flow chart. What these arguments a re  equiva- 
lent to for any particular use of a subroutine by a calling program should be clear from 
the statement of subroutine function in the calling program's flow chart. 

43 



Portions of the flow charts are contained within dashed blocks. An overall de- 
scription of what occurs within the dashed block is given at the point where the program 
flow initially enters the dashed block. Inside the block is more detailed information to 
aid an assembly-language programmer in achieving the required operation without vio- 
lating program conventions or  assumptions. A quick overview of program operation 
can be obtained by only reading the descriptions for the dashed in blocks of the flow 
chart. 

The starting point for each command is located by finding the offpage connector 
symbol ( 0 ) containing the mnemonic listed under the Programmer's Flow Chart Ref- 
erence section of each command description. The < and > commands of INFORM, 
however, a re  special, as they transfer the program to a different command interpreter 
section; that is, they change the value of the RTRN address so that when commands 
a re  completed, commands used to control the DATAO o r  SAMPLE subroutines and not 
INFORM' s control-edit commands a re  expected. These two commands, taken together, 
may be treated a s  a completely different program that merely uses the INFORM- 
defined, named-location tables and some of the INFORM subroutines. This was done 
so  that the program can be easily shortened by eliminating either SAMPLE, DATAO, 
o r  both, together with their somewhat common command processor. A more detailed 
description of this processor is given in the next section. 

should eliminate the need for any further explanation of the INFORM flow chart. The 
flow charts for the DATAO and SAMPLE subroutines and command processors (< and > 
commands) a re  listed in the final section of appendix G .  

This knowledge, together with the command and subroutine description sections 

DATAO and SAMPLE Command Processor 

DATAO and SAMPLE control commands a re  processed by a common command in- 
terpreter, the CMD subroutine. This routine interprets the command key character 
and branches to the appropriate command processing routine. The routines a re  com- 
mon for the @, Cy D, *, ! , and - commands a s  only some operands differ. The ? , 
A, and B commands require separate processors, as the operations to be performed 
vary considerably. 

The ? and B commands a re  separated by having different returns from the CMD 
subroutine. Hence, the routines to process these commands occur under the SPL (< 

command) and ODAT (> command) INFORM command processing sequences because 
these sequences call the CMD subroutine. 

SAMPLE. The different portions a re  effected by having the common portion (the ADDO 
The "A" command has some processing functions in common for both DATAO and 

44 



processor) execute a dynamic jump to subroutine. This jump is changed when the op- 
erators for  the common commands are changed in the SPL or  ODAT sequences. The 
names given these dynamic operators a re  XO1, DA1, NCH, CHIX, and NBUF. 

SAMPLE Structure 

The channel definitions for the SAMPLE program a re  stored in the TORG and SIDX 
matrices. The position of the values in these matrices is equal to the channel number 
they define. The matrix of indexing variables, SIDX, is used to obtain names and loca- 
tions of the variables sampled in a similar fashion a s  TABl, TABB, and TAB3 are  used 
to obtain names and locations for INFORM data tables. The matrix TORG contains the 
starting addresses of the storage blocks used to save the samples. The operation of 
SAMPLE is straightforward and requires no further explanation. 

DATAO Structure 

The DATAO program is considerably more complex. As was done for SAMPLE 
and the data tables of INFORM, a matrix of indexing variables is saved in DIDX to 
point to the proper named locations for each channel. In order to produce an output, 
DATAO must make a calculation of the form 

v - w  Voltage output as a fraction of ful l  scale = - 
X 

where V is the current value in EU's ,  W is the E U  value at the origin, and X is the 
E U  value at full scale. It is this calculation plus the need for a fast output that causes 
the complexity. 

If the machine were to perform this calculation using software floating-point, real- 
arithmetic routines and the EU values at zero and ful l  scale as supplied by the opera- 
tor, the calculation would take too long to be useful as  a dynamic display. Therefore, 
this calculation must be translated into one composed solely of arithmetic, which can 
be speedily handled by the machine' s hardware. 

ing integer arithmetic. However, this method creates problems because of possible 
subtraction overflows. Some sort of scaling would be necessary to prevent this. If 
this scaling had the effect of reducing the scaled magnitude of 1 X - W (  , small values 
of 1 X - WI (corresponding to large magnifications of V), would produce inaccurate 
values because of the truncation of a small number to its nearest integer. This is sig- 

One might think that this is simply a matter of scaling the EU values and perform- 

45 



nificant because it may be desirable to use DATA0 to distinguish a changing bit pattern 
among a few least-significant bits of a large word. If this word represents something 
such as a program address, the scale f a d o r  will be unity, and (X - W I will surely be 
small. If the scaling were to increase the magnitude of I X - Wl , a corresponding in- 
crease in the I V - Wl calculation would have to occur. But V is unknown, making 
it impossible to insure that the V - W calculation will not overflow without testing it. 

calculation is in the form 
All this complication adds is unnecessary calculation time, for, if the required 

Y = A  x V + B  

A and B can be scaled such that proper operation will be assured if W and I X - W( 
meet modest requirements. The computation is performed a s  

Y = V x K L + K ~ ) ~ ~ ~  
( 4  

The V x K1 multiplication is done first to yield a 31-bit product. This is then 
shifted right by a full right arithmetic shift two places to divide by 4 .  This shift will  
also insure that the absolute value of the result is less than (1/4) x z3O. A double- 
precision integer whose absolute value is less than (3/4) x 230, K2, may then be added 
to the shifted product without fear of an overflow. The multiplication by zK3 is then 
accomplished by means of a full right o r  left arithmetic shift, depending on a dynamic 
shift instruction that has been stored in the DEXP matrix. This shift instruction, o r  
K3, is selected such that 214 I= 1 K11 < 215 where K1 is an integer defined as 

truncated to 1 6  bits. 

scaled value of V that can be stored in a 16-bit word, the restrictions that I K31 be 
less than 16 (i. e. , a single shift instruction) and that K2 be less than (3/4)z3O trans- 
late into 

Then K2 becomes equal to -K1 x W/4Sf. If MAX is defined as the maximum 

and 

46 



It is doubtful that it would ever be desired to exceed these bounds since they lie outside 
the possible values of V. 

The required coefficients of K1 and K2 are stored in the three matrices DK1, 
DK2, and DKBB. The shift instruction stored in the DEXP matrix is actually picked 
out of the matrix, stored in the program path, and executed for each channel. The out- 
put device number and Dac channel number a re  selected in a similar fashion by execut- 
ing an output instruction that was built by the machine at channel-definition time and 
stored in the DUNT and DCHN matrices. The details of this operation obviously depend 
on the 1/0 structure of the machine on which the program is to be run. 

PROGRAMMING NOTES 

An attempt has been made to divorce the flow chart from dependency on any par- 
ticular machine, yet retain sufficient detail to facilitate implementation on machines 
other than the SEL 810B. Since considerable programming effort and debugging time 
has gone into the program structure to make it both maintainable and free of unexpect- 
ed operations, it is highly recommended that those operations outlined in the flow chart 
be strictly adhered to. 

Handling of Input and Output 

It may be noted that many of the commands contain the capability to change the I/O 
device on which the input or display is to occur. This versatility is derived from the 
special 1/0 routines listed in appendix F. These routines a re  part of a CIPHER 1/0 
library developed at Lewis, and are used for all input and output operations. They are  
designed to make all devices operate like a teletypewriter using an ASCII code. This 
capability was included since the required code is minimal because of the way that 1/0 
devices a re  interfaced to the SEL 810B computer. Persons using machines with less 
capability may wish to delete the unit change option to possibly reduce the core require- 
ments of the 1/0 routines. Note however, that the 1/0 device independency does enable 
multiple use of each 1/0 routine and that the entire set of routines is thus very compact. 
Eliminating this device independency may so specialize the use of each routine that 
more routines will be required to perform the complete computing job. The additional 
routines may actually use more core than is saved. Since these routines are very ver- 
satile, it may be more beneficial to save core by applying these routines to tasks out- 
side of INFORM and tnus shorten the existing main program instead of vice-versa. 
stead of vice-versa. 

47 



Modifications to the INFOJXM program to accomplish this change a re  minimal, as 
all 1/0 device numbers a re  obtained through the UNIT subroutine and are  thus easily 
identified for exclusion. To also ease the 1/0 change, the subroutine through which a 
particular 1/0 occurs is listed on the flow chart. 

The IN$ and OUT$ locations contain the device number to be used by the I/O sub- 
routines. They are kept pointing to the on-line keyboard by being frequently set to its 
device number. Those routines that might output through a modified IN$ or  OUT$ unit 
number have all possible exits from these routines to points that reset IN$ and OUT$ 
to the operator's console. Since these exit points are not always easily identified, be- 
cause of intricate program interleaving, it is recommended that anyone wishing to 
change the 1/0 formats do so by making the 1/0 subroutines compatible with the pro- 
gram and not vice versa. Also, any required device switching should be done using 
IN$ and OUT$ as identified in the flow chart. 

(such as, "top of form") a re  used. Since these functions could be performed manually 
for  1/0 devices on the development computer, no reference for  performing these tasks 
is indicated. Since INFORM is an interactive program, it is extremely difficult to pre- 
dict the operator's intent when issuing each command. Hence, it is much easier to let 
the operator manually manipulate the 1/0 devices. If manual manipulation is impossi- 
ble, such as for magnetic tape, additional commands will  be needed to allow the oper- 
ator to manipulate such devices. 

The program uses ASCII characters exclusively. In addition, inputs for which no 
reference to a CIPHER 1/0 library subroutine is given a r e  done through the IOIN sub- 
program, which uses the INPT subroutine. The IOIN subprogram returns the ASCII 
code and filters out all ASCII codes used for control, such a s  rubout, line feed, XOFF, 
etc. , by not recognizing them as inputs. If the machine being used recognizes lower- 
case letters, IOIN should also convert such codes to caps. Thus, these codes are pre- 
vented from entering the program. This is an important consideration, since failure to 
filter these codes may bypass the normal e r ror  protection devices andthus cause un- 
predictable behavior. The INPT subroutine recognizes carriage returns, and forces a 
line feed if the input device is the operator's console. This is an important feature, 
necessary to prevent overprinting on the operator's console, because the INFORM soft- 
ware assumes that the operator's console is always ready to receive messages o r  start 
a new command line. Commands that a re  self-terminating supply their own carriage 
return line feed. 

Problems may arise when devices that need special commands to initialize them 

Numerical Conventions 

All values used by the program a re  assumed to be integers unless they a re  repre- 
sented by AA, BB, CC, N, SVSF, VOLT, o r  numbers including a decimal point. The 

48 



AA, BB, etc., represent single-precision, floating-point real numbers. No mixed- 
mode arithmetic is shown, and all places where conversions are required a re  outlined 
explicitly. Places where double-precision integer arithmetic is required are  also 
identified. Any integer arithmetic, when shown, should be easily performed on a 16- 
bit machine without overflows occurring. 

The author would like to caution programmers about converting floating-point val- 
ues to integer values. To maintain the operator' s intent and the validity of commands 
by means of a maximum e r ro r  recognition capability, it is important to cancel the in- 
struction in progress by a branch to EROR if the floating-point number to be converted 
is greater than the integer value the machine can handle. A classic example is when 
an overflow occurs when calculating an address. If the instruction proceeds with an 
invalid address, unpredictable operation may result. The C$21 routine supplied in 
most Fortran packages may be used only if it can be modified to return to EROR if this 
e r ror  is detected. 

Common Changes 

Modifying - ~- __- the command structure. - The filtering of ASCII control and lowercase 
codes from the input stream yields a particularly efficient method of performing the 
decoding of the command key character. All INFORM control-edit commands are  as- 
sumed to start with a name for a named location; hence, the NAME subprogram is exe- 
cuted first. When the return from NAME occurs, it is known that the six-bit truncated 
ASCII code for the command key character entered must be either 0 or 133 to '77. The 
zero code is eliminated first by the machine's zero test. Of the codes remaining, if 
the code is less than '72, '25 is subtracted from it. If it is greater than o r  equal to 
'72, '72 is subtracted from it.  The codes a re  thus translated into numbers 0 to 144. 
Numbers greater than '32 come from ASCII codes for numbers and may be eliminated. 
Hence, numbers less than '33 may be used a s  an index for an address array that con- 
tains the addresses of the start of the command processing routines. By executing an 
indexed, indirect-jump instruction on this address array (where the machine performs 
indexing before the indirect), a jump to the proper command sequence is effected using 
a minimum amount of the core for the decoding process. 

This procedure also makes it easy to add or drop commands by simply changing 
the address in the array. Key characters that have no corresponding command have 
the address of EROR in the array.  The rr#'l  should not be used for a command because 
the operator may confuse it with the r r # r l  that terminates a command in progress. 

If more key characters are required, it is recommended that individual key char- 
acters be expanded into multiple commands by appending numerical character 0, 1, 2, 

49 



x 

o r  3, to the appropriate key character. This will create three commands where there 
was previously only one. This procedure was done for the : command, which became 
the four commands :0, :1, :2, and :3. This procedure is recommended because the 
routine to input and verify the numerals 0, 1, 2, 3 already exists with the program. 
By executing this routine followed by an indexed, indirect-jump instruction using the 
number input as an index, two additional commands will be decoded in less code than 
would be required to properly decode only one additional command using conventional 
compare and test procedures. This additional decode procedure is added to the start 
of the already existing command processing sequence (i. e . ,  processor CALC for the 
: command example). 

adding commands to suit one's needs should be easily accomplished in a minimum of 
steps without having to seriously compromise the ideal command format o r  function. 
The possibility of taking portions of existing command processors and converting them 
to subroutines if portions of their functions a re  needed for new commands should not be 
overlooked. 

Changing defaults. - The initial values for the modifiable defaults DFO to DF12 a re  
contained in an array called DFO. To permanently change the initial values of these 
defaults, simply change their initial values in the array.  To add a modifiable default, 
simply add an initial value to the array and place the new length of the array in the 
DFMT data location contained at the end of the array.  Likewise, to eliminate a default, 
shorten the array and change DFMT accordingly. Of course, the commands using the 
new o r  deleted defaults will have to be changed to accept o r  reject said defaults. The 
% change-default-value command will  automatically adjust to the new array length, a s  
it uses CFMT a s  a guide. 

Changing length of storage tables. - A common change to the program will be to 
shorten o r  expand the length of the storage tables. Given below a re  instructions on 
how to change the length of these tables. When making these changes, be sure to ob- 
serve any initial values a s  given in the definitions section. 

the maximum number of named locations which may be defined 

Once one becomes familiar with the basic functions performed by the subroutines, 

(1) To change the length of the defined named-location tables and thereby change 

(a) Set MAXL = X, the new length of these tables 
(b) Reserve locations for X values of matrices LOC, SF, NAM1, and NAM2. 

(Note: SF is floating-point real and requires two locations per value. ) 
(2) To change the length of data tables 1, 2, o r  3, to X, Y, and 2, respectively, 

(a) Set the LIM matrix to LIM(1) = X, LIM(2) = Y, and LIM(3) = Z 
(b) Reserve X/2, Y/2, and Z/2 locations for TABl, TAB:!, and TABS, re- 

(c) Reserve the greater of X, Y, or Z locations for STOR. 
spectively 

50 



(3) To change the maximum number of SAMPLE: channels to X 
(a) Set NS = X 
(b) Reserve X locations for the TORG and SIDX matrices. 

(a) Set ND = X 
(b) Reserve X locations for each of the following matrices: DK1, DEXP, 

(4) To change the maximum number of DATA0 channels to X 

DK2, DKZB, DIDX, DCHN, DUNT. 
If the passing of addresses to the PUNCH, LOAD, and VERIFY subroutines was 

properly programmed as being fully relocatable, changing the length of any of these 
tables will not affect the operation of commands that produce o r  load dump tapes. 
Likewise, all references to these tables should be independent of their length. 

rently used length of these tables, that all indexing is done in the forward direction 
(i. e .  , the algebraic value of I -t 1 is greater than I) using positive indices and that 
all loops a re  terminated by a compare-with-a-stop length. Failure to observe this 
convention may cause many errors  and may actually make the implementation more 
complex. This is because the portion of these tables in  use is constantly varying in 
length. In addition, most of the program operation depends on the value of the invari- 
ant indexing variables. Hence, much of the compare logic and indexing variable com- 
putations would need changing. It must be remembered that rolling of the defined 
named-location tables is not permitted, as this will change the indexing variables and 
thus alter the fundamental operation of the program. 

Core reduction. - A considerable reduction in the program core requirements can 
be made by eliminating the STOR temporary storage array. Its sole function is to in- 

crease the speed at which the values of the named locations a re  obtained. This is done 
to minimize data skew among variables that a r e  not quite stationary because of noise. 
This problem is frequently encountered in on-line control systems where updating of 
the control calculation must be maintained on a priority basis while the INFORM dis- 
play is taking place. Lf this feature is not necessary, the STOR buffer can be elimi- 
nated with a corresponding change in the PTBL through EXIT portions of the flow chart. 

default options of the commands. The savings come mainly from the elimination of the 
DFMT routine, the DFO array, and a shortening of each command in the appropriate 
manner. Some care will  be required to eliminate this feature, however, and it is not 
recommended since it greatly improves program operation. 

Expansion to..incorporate noninteger - data types. - The elimination of the speed re- 
quirement will also simplify the expansion of the INFORNI program to accommodate 
variables other than those stored as integers. The two most significant bits of the 
NAMl location a re  free to contain a data-type code, say 00 for integer, 10  for double- 

It is for this reason, as well as for simplifying the logic that depends on the cur-  

Some additional core (approximately 80 locations) can be saved by eliminating the 

51 



precision integer, 11 for floating-point, real numbers, etc. By creating a subroutine 
to obtain the current value of the variable and assuming that all values are  floating- 
point numbers instead of integers, the modifications should reduce to a simple matter 
of converting all nonaddress arithmetic to that of floating point. Of course, the FIND 
subroutine would also have to be modified to ignore the first two bits of NAMl when 
doing'a search of the NAMl and NAM2 tables. 

Expanding er ror  messages. - Some persons may object to the ambiguity of the 
single ? error  message issued whenever a fault is detected. Whenever a branch to 
ERQR occurs, the flow chart lists an appropriate comment that explains the particular 
e r ror  occurring. To expand the message file, simply modify the error  routine to ac- 
cept an argument to indicate which comment should be printed instead of the ? , and 
create a storage array of comments. The available assembly-language listing also 
has appropriate comments next to each branch to EROR. 

I_ 

Distinguishing Averaging from Nonave raging SAMPLE Mode 

The number-of-averages (NAVG) parameter entered by the operator is available 
from INFORM. It is an integer whose value may be obtained by the main calling pro- 
gram through external referencing procedures. It is greater than zero at all times. 
If SAMPLE is in the averaging mode, NAVG will be greater than 1 and equal to the 
number of averages. Hence, the calling program can use NAVG a s  the initial value 
for  a do-loop that increases each time SAMPLE returns to the abort location, indi- 
cating that all sample points needed for a single average have been taken. The start 
of this loop should initiate o r  restart any required transients and initialize (re- 
initialize) the sample number argument of SAMPLE to zero. The operator will also 
require a sense switch o r  INFORM changeable, logical variable to indicate when to 
start the first average of a reading. This initialization is done by calling CLRSMP and 
setting the do-loop variable equal to NAVG. Figure 17 is the flow chart for such a 
system. 

cally work when no averages a re  being taken, a s  NAVG will  equal 1, indicating that 
only one pass through the do-loop should occur. 

If the main program is set up to handle averaging in this manner, it will automati- 

CONCLUSIONS 

In this report a versatile program for generating and collecting data for display 
and information purposes has been described in detail. It has been shown that the 
software is sufficiently versatile to permit program debugging a s  well a s  to permit 

52 



Sampl ing c lock 
i n t e r r u p t  

reading 

Normal 

Clear sample 
storage area 

SAMPLE 

Save sample 
(N) 

All-samples- 

23 RETURN 

I 

Subtract  
decrement 

f rom average 
coun te r  
1 - 1 - 1  

Reading 
complete 

next average 

I 
I 
I 
I 

"'Uses a n  external  reference to the NAVG INFORM variable. 

Figure 17. - Flow char t  for  automatic con t ro l  of sampling when  SAMPLE i s  operating in e i the r  theaveraging o r  
nonaveraging mode. 

53 



parameter optimization for  software development. The fact that these manipulations 
may occur in a complete interactive or real-time environment increases the program's 
power. The example problem barely taps the resources of the INFORM software. By 
using INFORM and becoming more familiar with the commands as outlined in appen- 
dices C, D, E, and I, the user should find many opportunities to benefit from it. In 
fact, users may find that they need never produce a program to perform man-machine 
communications again. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, March 26, 1979, 
505-05. 

54 



APPENDIX A 

SYMBOLS 

A 

AA 

ACUM 

ADC 

ADDO 

ADDR 

ADD1 

Ad 

ANGLE 

AT 

ASCII 

ASNX 

AVLH 

B 

BB 

mnemonic used to indicate single word o r  integer values held temporarily 
(usually in an accumulator) 

same as A, except represents docble-word values such as  numbers in 

floating-point- real format 

pointer indicating the next available location in the LOC, NAM1, NAMZ, 
EXP and SF tables equal to the number of named locations defined plus 
one. Initial value: 1 + N, where N is the number of predefined named 
locations for the hardware registers 

analog-to-digital converter 

start of command processing routine that adds channel to DATA0 o r  
SAMPLE (See flow chart note 6 ,  appendix G, p. 108 . )  

address of defined name being tested for variable-trip-mode triggering 

start of the "add to data table" command 

octal-or-decimal address entered by operator (See appendix B for accept- 
able formats. ) 

dummy name operand used in examples 

start of the INFORM clear and open data-table command-processing 
ro  ut ine 

american standard code for information interchange 

indexing variable to be assigned to the named-location definition being 
created 

latch to classify the current value of NAVG; equals -NAVG if and only if 
NAVG > 1, equals 1 if and only if NAVG = 1. If AVLH equals zero, it 
is an indication to the SAMPLE subroutine to store a value of zero in- 
stead of the normal value. Initial value: 1 

mnemonic used to indicate single word o r  integer values held temporarily 
(usually in an accumulator) 

same as By except represents double-word values such a s  numbers in 

floating-point- real format 

55 



BUF 

CALC 

C D l l  

CHIX 

CHNG 

CIPHER 

CLOP 

CMDC 

CMDS 

CNDF 

CR 

CRLF 

CRTB 

CTBL 

DAC 

Dac 

DACW 

DATA 

common core buffer used by NAME subprogram to store the name input 
in same format used by NAMl and NAM2 tables. It contains all spaces 
if the name was defaulted. If the name contains less than three alpha- 
numeric characters, a space is added at the front. Initial value: un- 
specified 

start of the :1, :2, and :3 INFORM calculate-and-display command pro- 
cessing routines 

address pointer used by the INFORM list core command processing rou- 
tine. (See flow chart note 4. ) 

equivalent to SIDX o r  DIDX (See flow chart note 5,  appendix G, p. 107.  ) 

start of the command processing routine which changes a channel defini- 
tion of DATAO or  SAMPLE (See flow chart note 6,  appendix G, p. 108.  ) 

input/output library described in ref. 1 

flow chart connecting symbol 

channel incrementer for DATAO and SAMPLE A and C control com- 
mands; equals 1 for A commands and 0 for C commands 

start of the INFORM control command interpretation process 

number of modifiable defaults contained in the program 

ASCII code for carriage return 

used to designate ASCII codes for carriage return and line feed 

start of INFORM add name and/or start new line on open data-table com- 
mand processing routine 

start of the INFORM close o r  open data-table command processing 
routine 

direct-address constant equaling the starting address of a currently 
referenced data-table sequence array (TAB1, TAB2, o r  TAB3), with 
postindexing affixed 

digital-to-analog converter 

location in the DATAO subroutine where a dynamic output accumulator 
instruction is executed 

flow-chart symbol for portion of PTBL table printout routine where data 
are printed 

56 



DA1 

DCHN 

DEFN 

DEXP 

DFlX 9 

DFMT 

DFX 

DFO 

DF1 

DF2 

DF3 

DF4 

DF5 

DF 6 

DF7 

DF8 

DF9 

DFlO 

DFl l  

DF12 

E-9810 

address to be used for the starting location of SAMPLE or DATAO mem- 
ory dump tapes (See flow chart note 6,  appendix G, p. 108. ) 

matrix of digital-to-analog converter numbers on which DATAO outputs 
occur. 
Initial value: zeros or some illegitimate converter number 

Position in matrix corresponds to DATAO channel number. 

start of INFORM define-a-name or redefine-a-name command processing 
routine 

matrix of shift instructions for scaling DATAO outputs. Position in ma- 
trix corresponds to DATAO channel number 

temporary location used to save default indexing variable 

start of the set-default-forms command processing routine 

array of default values DFO to DF12 

number of format type to be used by passive-mode data-table printouts 
when the format specified in the calling program word (FORMAT) is 
zero 

table number to be used for passive-mode data-table printouts when the 
data-table number specified in the calling program word (FORMAT) is 
zero 

unit number to be used for passivemode data4able printouts when the 
unit number specified in the calling program word (FORMAT) is zero 

default format type of INFORM print-data-table command 

default data-table number for INFORM print-data-table command 

default output unit number for INFORM print-data-table command 

default starting channel number fo r  INFORM display-or-dump data col- 
lected by SAMPLE program command 

default ending channel number for INFORM display-or-dump data col- 
lected by SAMPLE program command 

default output unit number for INFORM display-or-dump data collected 
by SAMPLE program command 

default output unit number for saving definition dumps 

default input unit number for verifying or loading definition dumps 

default output unit number for INFORM list core command 

default output unit number for INFORM display all definitions command 

57 



DIDX 

DISP 

DK1 

DKBB 
DK2, I 
DLM2 

DROP 

DTLH 

DUMP 

DUNT 

DU1 

EADR 

EQU 

EROR 

ERROR 

matrix of indexing variables to point to named location operand used by 
each channel of DATAO; order in the matrix corresponds to the DATAO 
channel number 

start of INFORM command processor to display single INFORM definition 

matrix of multipliers for scaling DATAO outputs. The position in the 
matrix corresponds to the DATAO channel number 

two parallel matrices representing a double-precision integer used for 
offset voltage calculations on DATAO outputs. The position in the ma- 
trix corresponds to the DATAO channel number. 

location where the command keyword o r  last operand delimiter is saved 

start of command processing routine that deletes a channel from DATAO 
o r  SAMPLE (See flow chart note 5, appendix G, p. 107 .)  

data table latch. A negative number for DTLH indicates that no tables 
a re  open; 1, 2, or 3 indicates that that numbered data table is open. 
Initial value: -2 

start of INFOFW display-or-dump data collected by SAMPLE command 
processing routine 

matrix of write-Dac-unit-number instruction on which DATAO Dacs 
(DCHN matrix) are located. Initial value: zeros o r  some illegitimate 
output unit coded instruction 

flow chart connector symbol 

last core address whose contents are listed by the INFORM list core 
command. Initial value: 0 

value used to implement dynamic compare logic required for variable- 
trip-mode operation. Value will usually be 0, 1, o r  2, but the meaning 
may vary depending on the hardware compare instruction of the mz- 
chine used. For the SEL 810B; 0 means trip i f  the memory tested is 
greater than TRIP, 1 means trip if it equals TRIP, and 2 means trip if 
it is less than TRIP 

start of the INFORM command processor to display current E U  values 

start of e r ror  processing routine 

name operand used in example problem; it represents the difference be- 
tween the commanded and measured SPEEDS. 

58 



EU 

EVT 

EXIT 

FMTY 

FMTO 

FORM 

FORMAT 

I 

ID 

IDXO 

I N C l  

. INC2 

INDX 

INST 

IN$ 

engineering units 

start of the INFORM end-variable-trip-mode command processing routine 

program point where operator-set, mode-select flag is tested before re- 
turning from INFORM 

format type used by the INFORM list core command. Initial value: 0 

flow chart converting symbol directing start of routine to output a data 
table in format type 0 

start of the INFORM print-data-table command processing routine 

argument passed to INFORM to describe the format of the passive mode 
display. The least signgicant three bits a re  the output unit number; 
the next three a re  the data table number; and the remaining are  the 
format type. A zero for any of these numbers implies the use of DFO, 
DF1, or DF2, respectively 

mnemonic used to indicate indexes and counters 

identification 

number of the SAMPLE o r  DATA0 channel being defined or redefined 

number to be added to the potential default address for the DEFN INFORNI 
command processor to determine the actual default address 

value to be added to ACUM when the named location definition is com- 
plete; equals 0 if and only if an old definition is being replaced, 1 if a 
new definition is in process 

current index used to reference the defined portion of the named-location 
definition tables LOC, SF, NAM1, and "2. INDX is referred to a s  
the "indexing variable. ' I  Initial value: 0 

machine-generated instruction for variable-trip-mode implementation. 
It is either a no-operation or stop instruction. 

pseudoregister or common-core location that contains the unit number of 
the current input device. IN$ is used by the CIPHER 1/0 library de- 
scribed in ref. l. 

input or output 

mnemonic used to indicate indexes and counters 

59 



K1, K2, 
K3, K4 
K5 

LGTH 

IALM 

LIST 

LOADS 

LOC 

LODO 

MAX 

MAXL 

Max 

Min 

N 

Na 

NAM2, NAM19 
NAVG 

NBUF 

constants 

three-word array containing the current length of data tables 1 , 2, and 3. 
Initial values: LTGH(0) to LGTH(2), 0 

three-location data matrix used to indicate the maximum length the data- 
table sequence buffers TAB1, TABS, and TAB3 may achieve.. Values: 
172, 86, 86 

start of the INFO= list core command processing routine 

start of the INFORM restore INFORM definitions command processing 
routine 

matrix that contains the location for the definition of named locations. 
Initial values: LOC(0) = 0, the rest a re  arbitrary 

start of the command processing routine that loads channel-definition 
dump tapes for DATAO o r  SAMPLE (See flow chart note 6 . )  

maximum integer value the computer's arithmetic unit can process; 
usually equals +32767 (or -32768) for a 16-bit machine 

location containing the maximum length of the storage matrices for the 
definitions of the named locations 

operand for  DATAO control command indicating the displays full-scale 
EU value 

operand for DATAO control commands indicating the display1 s minimum 
EU value 

memory locations where the floating-point-real-number input through the 
TYR subprogram is saved 

name operand (See appendix B for acceptable formats. ) 

parallel tables that contain the five-character name for the definition of 
named-locations. Initial values: NAMl(0)  = 120202, NAMS(0) = 14040 

(five spaces for the no-name parameter), and the remainder are  arbi- 

trary 

number of points added together to implement the averaging filter of 
SAMPLE; must be greater than zero at all times. Initial value: 1 

maximum number of SAMPLE o r  DATAO channels that the ADD0 com- 
mand processor will permit 

60 



NCH 

NDCH 

NGLH 

NLTH 

No 

NSCH 

ODAT 

OLDX 

O I S F  

OTBL 

OUT$ 

PCHO 

PTBL 

QURY 

QUTE 

equivalent to NSCH or NDCH. Used to indicate the size of the SAMPLE 
or DATAO channel storage tables. It also serves as  the address used 
for the last location of the SAMPLE or  DATAO memory dump tapes. 
(See flow chart notes 6 and 7 ,  appendix G, p. 108. ) 

value in NDCH is one greater than the number of channels currently de- 
fined for DATAO. Initial value: l 

latch used by subroutines MATH and NANU. If equal to -1, no negative 
sign preceded the name or number received from the operator 

name latch set by the NAME subprogram to indicate whether name was 
before the delimiter. Its value is -1 if and only if a name was entered. 
All  other values imply no name was entered 

octal-or-decimal number used a s  operand (See appendix B for acceptable 
formats. ) 

one greater than the number of channels currently defined for SAMPLE. 
Initial value: 1 

start of the DATAO control command interpretation process 

old indexing variable, that is, the value of the indexing variable used by 
the last command. It is used by commands that permit a default of the 
name operand 

scale factor applied to number displayed by the list core INFORM com- 
mand. Initial value: 1 . 0  

start of the INFORM open-data-table command processing routine 

pseudoregister or common-core location that contains the number of the 
current output device. OUT$ is used by the CIPHER 1/0 library de- 
scribed in ref. l 

start of the command processing routine that punches definition dump tapes 
for DATAO or  SAMPLE. (See flow chart note 6,  appendix G, p. 108. ) 

start of the routine that prints a data table whose number is in TABN, on 
the device whose number is in OUT$, in the format contained in TFMT. 

start of INFORM command processing sequence to display all INFORM 
definitions 

start of the INFORM scale and store command processing sequence 

61 



RTRN 

SADR 

SF 

Sf 

SFAE 

SFTO 

SIDX 

SIZE 

SVLH 

SOUT 

SVSF 

TABN 

TAB3 

TACH 

TADR 

TDKB 

return address for the EROR er ror  processing subroutine, and for com- 
mand execution sequences. It points to one of three possible program 
locations: CMDS, SPL, and ODAT. Initial value: the address of 
CMDS 

first core address whose contents are listed by the INFORM list core 
command. Initial value: 0 

matrix that contains the first word of the single-precision, floating-point- 
real scale factor of the definition of the named locations. Initial values 
SF(0) = 0; the rest a re  arbitrary 

Scale factor 

sequentially formed arithmetic expression (See appendix B for acceptable 
formats. ) 

location in DATAO where a dynamic shift instruction is executed 

matrix of indexing variables to point to the named-location operand used 
by each channel of SAMPLE. The order in the matrix corresponds to 
the SAMPLE channel number 

single value that equals the length of each SAMPLE storage block 

same as AVLH except that it is never zero. It is used to save the original 
value of AVLH when CLRSMP sets AVLH to zero. It is also used in- 
stead of AVLH whenever it is necessary to protect program operation 
from zero AVLH values. This is necessary since CLRSMP, DATAO, 
SAMPLE, and INFORM may be running concurrently on different inter- 
rupt levels. Initial value: 1 

flow chart connector symbol used to indicate exit from the VT routine 

scale factor obtained from the GSF o r  GSF2 subroutines floating-point- 
real value 

data-table number to be used by the PTBL data table printout routine 

matrices of indexing variables, which serve as format tables for data 
tables 1, 2, and 3. A value of '377 denotes a line terminator, and zero 
that a blank space is to be placed in the data table output 

dummy name operand used in examples 

address to be assigned to named location definition being created 

temporary location used to save value to go in DK2B matrix until all op- 
erator entries a re  received 

62 



TDKl 

TDK2 

TEX 

TFMT 

Tn 

TNA 

TORG 

TRIP 

TUN 

UARW 

VCMD 

VOLT 

V T  

VTLH 

X 

xo1 

temporary location used to save DK1 DATA0 integer-multiply constant 
until all operator entries a re  received 

temporary location used to save value to go in DK2 matrix constant until 
all operator entries are received 

temporary location used to save shift instruction to go in DEXP matrix 
until all operator entries are received 

format to be used by the PTBL data table printout routine 

data table number operand 

two-location buffer that holds the packed name to be assigned to the 
named-location definition being created 

matrix of starting addresses of the sample storage block of each SAMPLE 
channel. The order in the matrix corresponds to the SAMPLE channel 
number 

scaled engineering unit value for the defined name being tested against 
variable-trip-mode requirements. TRIP is compared with the current 
value of the named location to determine if trip is to occur 

temporary location to save instruction to go into DONT matrix until all 
operator entries a re  received 

start of the INFORM delete-data-table-line command processing routine 

name operand used in examples to represent a commanded output voltage 

floating-point real constant that equals the number of counts produced by 
the analog-to-digital converters for a 1.0-volt input. Value: 3200.0 
for the SEL 810B system 

start of the INFORM enable-variable-trip-mode command processing 
routine 

variable-trip-mode latch. A zero sets the latch that indicates that the 
variable-trip option is to be used when in passive mode. Initial value: 
Reset or not equal to zero 

used to represent single-word-variable arguments passed to or from sub- 

address pointer pointing to either the S1 or 01 subroutines (See flow chart 

routines 

note 6,  appendix G ,  p. 108.) 

63 



xx 
x2 flow chart connector symbol 

x3 flow chart connector symbol 

X 

used to represent two-word-variable arguments passed to o r  from subroutines 

used to represent an arbitrary ASCII character; may appear strung together, 
as xxxxx, to represent more than one (in this case, 5) ASCII characters 

used to represent single-word-variable arguments passed to o r  from subrou- Y 
tines 

Yn single ASCII character to indicate operator response; it is rtYrr for yes, and 
trNrr for no 

YY 

J 

used to represent two-word-variable arguments passed to o r  from subroutines 

symbol used to indicate an operator entered carriage-return 

64 

. . . . . .. , 



APPENDIX B 

CONVENTIONS AND DEFINITIONS 

Certain definitions and conventions a re  used when describing the operation of the 
program. These conventions are listed below. 

Values printed by the machine: When it is necessary for an example to indicate values 
printed by the machine, these values a re  underlined unless specified otherwise. 

Representation of ASCII or  keyboard characters : Keyboard entries a re  shown within 
quotation marks. Where the character entered is nonprintable o r  ambiguous, such 
a s  "space", its description appears within the quotation marks. 

Representation of octal (base eight) numbers: Numbers displayed or  entered in octal, 
or base eight, representation a re  preceded by an apostrophy. For example, '100 
is equivalent to decimal 64. 

Machine size: Where references to machine registers a re  made o r  where maximum 
values or limits a re  given, they a re  for a 16-bit machine using twots complement 
arithmetic and having a maximum integer capacity of +32767 and -32768. Single- 
precision, floating-point numbers a re  assumed to be 32 bit plus sign with a nine- 
bit, signed exponent field. 

Octal-decimal numbers: An octal-decimal number is any number entered in a format 
acceptable to the TTYR subroutine of the CIPHER 1/0 library. Acceptable formats 
a re  octal o r  free-format decimal. 

mandatory apostrophy and must consist of one to six base-eight digits. Numerical 
length must not exceed 16 binary bits. The number is terminated with a comma or  
carriage-return . 

Decimal numbers may be optionally preceded by a plus or  minus sign followed 
by any number of decimal digits. The decimal point may occur anywhere or  be 
omitted. The absolute value of any entry must not exceed 
represent either decimal, binary, or unity (scaled fraction) scaling may be entered. 
Decimal scaling is represented by an t'Er', or "E-" entry followed by a max- 
imum of two decimal digits. Binary scaling is represented by a t'Btt, t'B+rt, o r  
trB-t' entry followed by a maximum of two decimal digits. Binary scaling is such 
that BO places the decimal point before the most significant bit of the machine's 
integer accumulator with B + I moving the decimal point right and B - I left I 

Octal numbers a re  preceded by an optional plus o r  minus sign followed by a 

An exponent to 

65 



places. Binary scaled numbers may not be converted to integers pdess X, the 
decimal numerical portion of the entry is 

I -2 2s x <  21 

Unity scaling is a special case of binary scaling equivalent to BO. All numbers 
a r e  entered as fractions and scaled such that 1 . 0  is equal to the maximum integer 
value of the machine. To indicate unity scaling, an S follows the fractional entry. 
No digits a r e  allowed after the S .  The absolute value of a unity scaled value must 
be greater than o r  equal to -1.0 and less than +l. 0. 

Numbers may be defaulted (omitted) by simply entering a comma (or carriage 
return if at end of line). In this event the default value for the command in prog- 
ress will  be used. An erroneous number may be deleted without canceling the 
whole command line by entering a rubout (ASCII -377) before the comma. The 
er ror  message E! indicates that the start of a new number is expected. A comma 
immediately following the e r ror  message will result in the use of the default value. 
Entry of !(St), tr9'c, ctBrr, (Stt, "ET', o r  It .  It when entering an octal number o r  entry 
of an illegal sequence (i. e. , two exponents) will have the same effect a s  entering 
a rubout. Entry of any character not recognizable by the TTYR subroutine will be 
treated as a delimiter, thus causing a return to the INFOItM software. Since 
INFORM only accepts commas, carriage returns, o r  spaces for delimiters, 
INFORM will cancel the command line and issue the e r ror  message ? when such 
entries occur. Examples for decimal 100.0 are 

100, 100.0 1 .OE2, +1 .OE+2 , 
+1000E-1 , 1 000. OE- 1 '144, 
ll'lruboutll ---- E! 100, 25B13 .00305176S 

For a -100 .0  simply precede all the preceding examples by a minus sign. An en- 
try of 1177634 is also equal to -100.0. 

Sequentially formed arithmetic expression (SFAE) : A sequentially formed arithmetic 
expression is any string of octal o r  decimal numbers o r  defined names separated 
by +, -, *, o r  / characters. The sequence terminates with either a comma o r  
carriage return, depending on the command using the SFAE as an operand. The 
numerical value to be used fo r  a name also depends on the command using the 
SFAE . For example, when defining an address, the location of the named location 
as currently defined is used wherever the name appears. Other commands may 
use the currently defined scale factor o r  the current EU value of the named loca- 
tion. Appendixes C, D, and E list the default value appropriate for each command. 

6 6  



The SFAE is evaluated as each operation (+ for addition, - for subtraction, * for 
multiplication, / for division) and number o r  name is received. Once an operation 
is entered, it must be followed by a numerical value or name. Failure to do so, 
or use of an undefined name, causes the typout of ? and cancellation of the com- 
mand in progress. Assuming the values used for SPEED and TACH to be identical, 
some examples for the numerical value of 100 a re  

1 .OE2 1 .OE+2 100, '144,  '100+'44, 90+10, 
50*2, 200/2. y 100.0*3.0/6.0*2.0 , SPEED/TACH*lOO. , 
150+"rubout" E! -50, ---- 
Note: 50-501Trubout1T ---- E! + 50, is incorrect since the rubout only cancels the octal 
or decimal number 50 and not the minus sign, which is a numerical operator of 
the SFAE indicating subtraction. The correct procedure would be to enter: 
50--50, as  it is interpreted as 50-(-50), where the second minus sign is part of 
the octal or decimal number 50. 

Octal or decimal address: An octal or decimal address may consist of any sequentially 
formed arithmetic expression. If a name occurs within the expression, the loca- 
tion a s  currently defined for the named location is used as the numerical value. 
The comma or carriage return that terminates the SFAE also terminates the ad- 
dress entry. The only restriction on the SFAE is that the calculated value must 
be a legitimate core location. Warning: Since addresses a re  integers, intermedi- 
ate values formed when producing the SFAE that exceed 24 binary bits or that pro- 
duce fractions which cannot be represented exactly by a 32-bit floating-point quan- 
tity may result in calculated addresses that a r e  incorrect due to truncation when 
the final value is converted to an integer. For example, 13/3*3 yields an address 
of 12 and not 13! Usually, one is safe if only addition, subtraction, and multiplica- 
tion by small integers a re  used when entering addresses. 

This flexibility in defining the address allows the rapid determination of ad- 
dresses that a r e  located within arrays or relocatable subprograms, or both, and 
frees the operator from tedious base-eight or mixed-base calculations. By defin- 
ing named locations whose address is the relocation base of subprograms, the ad- 
dresses listed by the assembler may be used directly by simply inserting the de- 
fined name before the comma or carriage return terminating the SFAE. Examples 
for a decimal 100.0 address are given below. The named location f lNa t l  is as- 
sumed to have a defined address of decimal 50. 

50+Na , Na+50., Na+6"rubout" ---- E! 50, 
Na+Na , Na+' 62 , Na+100.-50. , Na*2, 

67 



Scale factor (Sf): A scale factor (Sf) is the number to be used to multiply by a machine- 
stored number to produce an engineering unit value. When being entered by the 
operator, it may consist of any sequentially formed arithmetic expression. If a 
defined name occurs within the expression, the scale factor as currently defined 
for the named location is used as the numerical value within the expression. The 
comma or carriage return that terminates the SFAE also terminates the scale- 
factor entry. A scale factor can be either positive or negative. A scale factor of 
zero is interpreted as being equal to 1 .0 ,  but that the named location represents 
an octal number rather than an EU quantity. For more information see the 
Defining named locations section (p. 16) .  

NAME: A NAME consists of one to five characters for a named location. The first 
character must be one of the 26 possible alphabetic characters. Since truncated 
ASCII is used, all letters must be capitals. The remaining four characters are  
optional and may be any of the 36 possible alphanumeric characters. 

68 



APPENDIX C 

INFORM COMMANDS 

The general structure and use of the commands listed below is described in the 
section Use of Commands (p. 15). Unless the command has a prefix operand, the key 
character should be the first character on the command line. For commands with a 
prefix operand, the operand should precede the key character, since failure to do so 
will automatically substitute the default value for the prefix operand. The start of a 
command line is indicated by the machine output of an underscore and a bell. 

Any operand that appears within braces may be defaulted if the default value as 
listed for that operand is desired. Operands DFO to DF12 may have their default val- 
ues changed through use of the % command. Machine messages that occur a s  part of 
a command sequence a re  underlined and should not be entered by the operator. Al- 
though not shown, the operator may terminate formats with either a comma o r  a car- 
riage return. Lf a carriage return occurs before all operands a re  entered, the default 
value for the unentered operands is used. If an unentered operand has no default value, 
an error  will occur. Some commands that have prefix operands (such a s  =) need no 
terminator, as they a re  terminated by the machine. A table containing a summary of 
all the commands is given in appendix I .  

Mode Control Commands 

Enable variable t r i p  mode 

I I Key cha rac t e r  I Operands 

{ N a 1 x( S FAE I 
HLT? Yn [ I  ----- 

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) Default value: The last used name operand of previous 
commands. 

o r  V') to indicate that the trip 
condition wil l  be met when N a  either is greater than, equal to, o r  less than 
the SFAE. 

which trip will occur. If a name appears within the SFAE , the current EU 

x: One of three possible characters ( l c>rr ,  

SFAE : A sequentially formed arithmetic expression for an EU value for N a  at 

69 



value for that name is used as the numerical value within the SFAE. Default 
value: 0.0. 

halt when the tr ip condition is met, o r  rlNfl to decline the halt option. 
Yn: One'of two possible characters - "Yrf to indicate the desirability of a machine 

Description: This command is used to set the variable-trip-mode latch (VTLH) and 
define the trip condition. Note: A mode change will  not occur on executing this 
command, but the path of the passive mode will be altered (see section INFORM 
Mode Selection). 

Programmer's flow-chart reference: VT. 

[ 

Reenable previous variable t r ip  mode 

None 

I Key charac te r  I Operands I 

Key charac te r  Operands 

Description: Envoking this command is the same as reentering the previous enable 
variable-trip-mode command as described above. If no previous enable variable- 
trip-mode command was issued, an e r ro r  will occur. Variable-trip-mode condi- 
tions a re  not saved on relocatable binary dump tapes; hence, loa- such tapes 
will not affect operation of this command. 

Programmer's flow-chart reference: VT. 

Disable variable trip mode 

1 I None 

Description: This command resets the variable-trip-mode latch (WLH). No operands 

Programmer's flow-chart reference: EVT. 
a re  required. 

Accept DATAO control commands 

I Key charac te r  I Operands I I I 

I > I None 
I I I 
Description: This command is used to change the input command stringfrom  INFO^ 

Programmer's flow-chart reference: ODAT. 
control-edit commands to DATAO control commands. 

70 



Accept SAMPLE control commands 

I Key charac te r  Operands 

€ T n l  
I 

@ 

I- I 1 1 Key charac te r  Operands 

None 
I 

< 

Description: This command is used to change the input command string from INFORM 

Programmer's flow-chart reference: SPL. 
control-edit commands to SAMPLE control commands. 

Exit INFORM subroutine 

I I 1 

I I Key cha rac t e r  I Operands 
L .  ._ - 1 -  I 1 None 

Data Table Manipulation Commands 

Open data table 

I Key cha rac t e r  I Operands I ! I 

Tn: A single-digit table number (1, 2, o r  3).  
Description: This command opens table number Tn. 
Programmer's flow-chart reference: OTBL. 

71 

.. ._ 



Close an open data table 

j e r  I Operands 
~ - -. __ - 

Description: This command closes any open data table. 
Programmer's flow-chart reference: CTBL. 

Add name to open table 

Additional 
ope ran d cha rac t e r  o peran d s  

{Nal None 

Na: A one- to five-character name for a named location. (See appendix B for 
acceptable formats.) Default value: A blank space equal to the length of one 
variable printout is added to an open table. If no table is open, see "Descrip- 
tion" below. 

Description: This command adds the named location N a  to the rear  of an open table. 
If no table is open, no action is taken, but the name referenced becomes the de- 
fault value of the name operand for later commands that use the last-referenced 
name operand as their default value. If no name operand was entered, the default 
value remains unchanged. After the entry of this command, the machine prints a 
two-digit decimal number, indicating the number of entries since the last line ter- 
minator (i. e. , the number of names on the current line). 

programmer's flow-chart reference: ADD1 . 

Add name and/or start new line on open data table 1 Prefix 1 K; 

1 Additional 
operand cha rac t e r  operands 

INal None 

Na: A one- to five-character name for named location. (See appendix B for ac- 
ceptable formats.) Default value: The line is terminated without adding a 
name to the table. 

Description: Variable Na, if supplied, and a line terminator are added to an open 
table. This will end the previous line of a currently open table and start a new 

72 



, .- 

1 Key -character  

+ 

blank line. Following the entry of this command, the machine will print a two- 
digit decimal number, 00, indicating the start of the new line. If no table is open, 
an e r ror  message is issued, and no action is taken. 

Programmer's flow-chart reference: CRTB. 

Operands 

None 
I 

Print data table 

Key charac te r  Operands J-..---1 I c-- L- _ _  

DF3: A format number (0, 1, 2 ,  or  3). Default value: Format type 1. 
DF4: A data table number (1, 2, or 3). Default value: Data table 1. 
DF5: An octal or decimal number for  an output device. Default value: Line 

printer (unit 5). 
Description: This command is used to print the prestored data-table-sequence num- 

ber, DF4 (data table DF4) in data-table-format number DF3 on I/O-device DF5, 
while in the interactive mode. Any combination of DF3, DF4, and DF5 is permit- 
ted, but care must be exercised to insure that data table DF4 has line terminators 
occurring sufficiently often to prevent truncation of a line by the 1/0 device. If 
data table DF4 is of zero length (i.e., undefined), an e r ror  message is issued, and 
no action is taken. Examples of data formats 1, 2 ,  and 3 are given in figure 7 
(p. 2 0 ) .  Data-table-format 0 is designed for computer to computer communica- 
tion. It is identical to a $2 SAMPLE-block-dump format for only one data block. 
The number of variables in the data table becomes the block-length number in 
this dump format. See the $2 command description below for a detailed descrip- 
tion of the $2 dump format. 

Programmer's flow-chart reference: FORM. 

73 



Miscellaneous Display Commands 

Pref ix  
o pe ran d 

{Nal 

Display current EU value 

Key Additional 
c h a ra  c t e  r ope ran ds 

None - - 

t I I 1 

Key charac te r  

:O 

Operands 

S FAE 

I I I I 

Na: A one- to five-character name for a named location, (See appendix B for ac- 
ceptable formats. ) Default value: The last-used name operand of previous 
commands. 

Description: This command is used to display the current EU value for the named 

Programmer's flow-chart reference: EQU 
location Na. 

Calculate and display scale factor 

Key charac te r  

SFAE: A sequentially formed arithmetic expression for a scale factor. If a name 
appears within the SFAE, the scale factor as currently defined for that name 
is used a s  the numerical value with the SFAE. 

Description: The value calculated by the SFAE is displayed on the operator's console. 
Programmer's flow-chart reference: CALC. 

74 



Calculate _. and display engineering units (EU) 

I SFAE 
~ 

:2 I 
I I Key character I Operands 

SFAE: A sequentially formed arithmetic expression for an EU value. If a name 
appears within the SFAE, the current EU value as located and descaled ac- 
cording to the name's definition is used a s  the numerical value within the 
SFAE. 

Description: The value calculated by the SFAE is displayed on the operator's console 
Programmer' s flow-chart reference : CALC . 
Calculate and display octal words of floating-point EU value 

I I Key character I Operands 

: 3  I SFAE I 
SFAE: A sequentially formed arithmetic expression for an EU value. If a name 

appears within the SFAE, the current E U  value as located and descaled ac- 
cording to the name's definition is used as the numerical value within the 
SFAE. 

Description: This command is identical to the :2 command, except that the display 

Programmer's flow-chart reference: CALC. 
consists of two octal values instead of the floating-point number. 

I 

Adl: An SFAE for the starting octal or decimal address. (See appendix B for ac- 
ceptable formats. ) Default value: Last nondefaulted Adl used by this com- 
mand. Initial value: 0. 

defaulted Ad2 used by this command, if and only if Adl was defaulted. Ad2 
defaults to Adl if Adl was entered. Initial value: 0. 

x: Data or display type. This ASCII character should be for an octal display 
of integer data: "1" for a decimal display of integer data: ''2" for a floating- 

Ad2: An SFAE for  the ending octal or decimal address. Default value: Last non- 

75 



point display of single-precision, floating-point real data; "4" for a decimal 
display of scaled-fraction data; "6" for a floating-point display of double- 
precision integer data; "7" for  a decimal integer display of double-precision 
integer data; and 'r8'' for an ASCII dump of core, the core being interpreted as 
containing 2 ASCII characters per word. Default value: Last nondefaulted x 
used by this command. Initial value : 0. 

Sf: An SFAE for  an octal or decimal scale factor to be applied to the data. See 
appendix B for acceptable formats. Default value: Last nondefaulted Sf used 
by this command. The initial value assumed is 1.0.  Note: This value is ig- 
nored for display formats 0, 7,  and 8. 

DF11: Octal or decimal number for an output device. Default value: The opera- 
tor's console (unit 1). 

Description: The core starting at location Ad1 and up to and including Ad2, is dis- 
played on the device selected by DF11. The value for x determines how the data 
a re  to be interpreted (integer, floating-point real, scaled fraction, or ASCII) and 
what kind of display is to be produced. Before the display, the data a re  multiplied 
by Sf. Sf is ignored for octal, double-precision integers, and ASCH data. 

Programmer's flow-chart reference: LIST. 

Data Storage Commands 

Scale and store integer 1 Pref ix  I Key [Additional 
operand cha rac t e r  operands 

_ _  - 

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) Default value: The last-used name operand of previous 
commands. 

SFAE: A sequentially formed arithmetic expression for  an EU value to be stored. 
If a name appears within the SFAE, the current EU value, as located and de- 
scaled from its definition, is used a s  the numerical value within the SFAE. 
Default value: 0.0.  

Description: The EU value as calculated by the SFAE is scaled and stored as an inte- 
ger using the scale factor and location of the definition for Na. The octal repre- 
sentation of the location for Na, which is to be modified, is displayed before ac- 
ceptance of the SFAE. The message issued is "LOCATION WAS = xxxxxx ". 

76 



After this message the operator should enter the SFAE. After the SFAE, the ma- 
chine will  print the octal representation of the value just stored. The message is 
"NOW = XXXICXX''. 

Programmer's flow-chart reference: QUTE . 

- . .  

Prefix Key 
operand charac te r  

(Nal 'I s pace" 

Commands for Definition Control 

Addi t i  onal 
operands 

(Ad) , { S f 1  
1. - ... 1 I 

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) Default value: the no-name parameter. 

Ad: An SFAE for an octal or decimal address. (See appendix B for acceptable 
formats.) Default value: One greater than the address for that of the last- 
used name operand of previous commands. If Ad is defaulted, the machine 
will  display the default value before accepting the Sf entry. (See note below. ) 

Sf: An SFAE for an octal or decimal scale factor. (See appendix B for acceptable 
formats.) Default value: The same scale factor a s  that of the last-used name 
operand of previous commands. 

for following commands. For example, 
Note: If N a  is defaulted, the no-name parameter becomes the default name operand 

= '000000 - -------- 
The "=" command displays the no-name parameter (i. e. , core location 1) using a 
scale factor of 0. Continuing, 

Since we defaulted both Ad and Sf for the space command, a value of 1 + 1, or 2 ,  
became the default location (as demonstrated by the machine display of '000002). 
The default Sf became 0, since the definition for the no-name parameter we just 
defined was used to determine the Ad and Sf values. 

Description: This command is used when it is desired to define a named location. The 
default option for Na,  or the no-name parameter, is especially useful when making 

77 



program patches o r  doing random searches during debugging. It allows the oper- 
ator to manipulate the core with all the power associated with named variables, 
but without cluttering the defined-name list with temporary definitions. The no- 
name variable is overwritten each time this command is envoked, but the ensuing 
definition is used to determine the default values of subsequent commands; that is, 
the no-name parameter becomes the last-used name operand for these commands 
until a predefined name is used. The use of this command to make program 
patches is illustrated by the following sequence used to patch machine instructions 
in locations '400 through '405. 

Programmer's flow-chart reference: DEFN. 

Redefine a named location 

P r e f i x  Addi t iona ' l  
o peran d charac ter  ope ran  ds 

{Na) "spacell {xxxxx1,{Ad1 , { S f 1  

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) 

xxxxx: A one- to five-character name for a named location to replace name Na. 
It (i. e., MWUL) may be the same as N a  but otherwise must be unique. (See 
appendix B for acceptable formats. ) Default value: The name used for Na 
(i. e.,  the name stays the same). 

78 



>- 

~ 

Key charac te r  

% ! 

Ad: An SFAE for an octal or decimal address. (See appendix B for acceptable 
formats.) Default value: The address currently defined for Na (i. e.,  the ad- 
dress remains unchanged). 

Sf: An SFAE for an octal or decimal scale factor. (See appendix B for acceptable 
formats. ) Default value: The scale factor currently defined for Na (i. e., Sf 
will remain unchanged). 

Description: This command is used to redefine a named location. All occurrences of 

V 

variable Na in any tables will  now be replaced with variable xxxxx, and the new 
location and scale factor, as defined, will be used. The only exception to this rule 
is when Na occurs in a DATAO table. Here, the new name and location will be 
used, but because additional values a re  derived from the scale factor when build- 
ing DATAO tables, the old scaling for Na will be applied to xxxxx in DATAO out- 
puts. Hence, the DATAO table entry must be re-entered. (See appendix D for 
commands to revise the DATAO tables.) 

Programmer's flow-chart reference: DEFN(0VLY). 

Operands 

DFn ,{No1 

Display all INFORM definitions 

I Key charac te r  Operands I 1 

79 



DF12: Output device number. Default value: Line printer (unit 5). 

is displayed on output device DF12. Since users may define their scale factors as 
ratios, the single numerical value of the ratio may be of little concern; hence, an 
EU value corresponding to the maximum value a single integer can contain and the 
EU value corresponding to a 1-volt Dac output are also displayed. Each definition 
is numbered so that the operator can determine how many definitions remain be- 
fore the name learing tables a re  filled. 

Description: The location and scale factor for each named location currently defined 

Programmer's flow-chart reference: QURY. 

Display a single INFORM definition 

_ _  

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) Default value: The no-name parameter. 

Description: The location and scale factor as currently defined for named-location Na 
is displayed on the operator' s console. An Eu value corresponding to the maxi- 
mum value a single integer can contain and the EU value corresponding to a 1-volt 
Dac output a r e  also displayed. The indexing variable for the name is also dis- 
played preceding these numbers. 

Programmer's flow-chart reference: DISP. 

Save INFORM definitions 

I Key charac te r  I Operands 

DF9: The unit number of the output device on which the dump is to occur. Note: 
Either a comma o r  carriage return may follow DF9. Default value: Paper 
tape punch (unit 2) .  

Yn: A single ASCII character, "Yr' o r  "NI', to indicate if the dump just produced 
is to be verified. 

DF10: The unit number of the input device from which the dump is to be read. 
DFlO should only be entered if Yn is the ASCII rrYr'. Default value: Paper 
tape reader (unit 2 ) .  

80 



Description: All the defined named-location definitions, the three prestored data-table 
sequences, and the default forms are output on device DF9 in a relocatable binary- 
dump format. This dump may be saved and used to restore these operator-defined 
values at a later date by using the * (restore definitions) command. The VERTFY? 
query occurs after completion of the dump. If it is desired to check the dump for 
bit errors,  the dump should first be mountdd onto device DF10, then an ASCII rtYrt 
should be entered for the Yn mnemonic, foliowed by a value for DFlO. The dump 
will then be read and checked against the values in core. If and only if an e r ror  
occurs, CK is printed on the operator's input device, and the command is termi- 
nated before the. entire dump is read. If no verification is desired, an ASCII "N" 
should be entered for the Yn mnemonic, and no DFlO should be entered. This op- 
tion is especially useful when INFORM is used for programs that have their named 
locations defined as being in the common core. The program may be updated and 
reloaded without having to redefine the INFOFW names. As long a s  the common 
locations remain fixed, the dump tape may be used to teach a new load the old 
definitions. 

Programmer's flow-chart reference: PNCH. 

Restore INFORM definitions 

b e y  charac te r  Operands 

C DF101 
I 

* 

DF10: The unit number of the input device from which the definition dump is to be 
read. Default value: Paper tape reader (unit 2). 

Description: A dump produced by the ! (save definitions) command is read from device 
DF10. The values read from this dump replace those values and become the cur- 
rently defined values. As a result of executing this command, all tables are 
closed and the variable-trip mode is disabled. If a read error occurs during the 
load process, CK is printed on the operator's input device, all table sequences, 
definitions, and default values are cleared to their initial values, and the command 
is terminated before the remainder of the dump is read. Since all program intel- 
ligence is lost if a bad dump is read, it is good practice to verify all dumps before 
using them. 

Note: If, after a fresh load of INFOFW, a dump is produced before any definitions are  
made, this dump will  clear the program memory whenever loaded. Loading this 
dump will allow the operator to start with a fresh set of definitions whenever 
desired. 

Programmerls flow-chart reference: LOADS. 

81 



Display/Dump Data Collected by SAMPLE 

Output SAMPLE channels in format type 1 

~ I 
_ _  - - --___ 

Key c h a r a  c t e r 0 pe r a  n ds 

CDF61 ,CDF71 ,CDF81 
- _  

~ 

DF6: An octal o r  decimal number representing the first channel data block to be 
output. Default value: zero. 

DF7: An octal o r  decimal number representing the last channel data block to be 
output. Default value: 80. Note: If DF7 exceeds the number of channels cur- 
rently defined, only as many channels as a re  defined will  be dumped. 

DF8: Number of the output device on which the data from the SAMPLE subroutine 
channels is to be output. Default value: Floppy disk (unit 3) .  

Description: The data gathered by the SAMPLE subroutine for channels DF6 to DF7 is 
output on device DF8. If DF7 exceeds the number of channels currently defined, 
the last channel number defined is used for DF7. The data a re  taken from the 
storage blocks reserved for the SAMPLE channels. The entire block length, as 
currently defined, is output for each channel. If averages were taken, only the 
single-precision value of the average is output. The data for each channel a r e  out- 
put in ASCII characters representing the decimal equivalent of the scaled binary 
data. Each line of output is terminated with the carriage return,  line feed, and 
flXOFF1r (ASCII '223) characters. This format was established for automated read- 
ing of the output into a larger time-sharing computer system using a Fortran pro- 
gram. A typical $1 dump is shown in figure 18. 

The data are grouped in blocks of lines, one block for each SAMPLE channel . 
Preceding all of these blocks a re  three lines: The first line contains the number 
of data points within each block of data that is to follow. This number occurs 
twice in the Fortran format of 216. The second line of output is a number de- 
rived by multiplying the first channel number by 100 and adding the last channel 
number. This value occurs in the Fortran format of 16. The third line duplicates 
this number in the Fortran format of 18. The data blocks follow these three lines. 
The format for each line within a channel's data block is a s  follows: 

First line: The channel number occurs twice in the Fortran format of 216. 
Second line: The scale factor of the named-location sampled for this channel 

appears. The scale factor is in the Fortran format of 16, 13, where the I3 value 
represents a power of 1 0  to be multiplied times the I6 value. 

equals the algebraic sum of the I6 and I3 values of the second line above. 
Third line: A checksum in the Fortran format of I7 is given. This value 

82 



1 

Q, 
w 



Fourth line: The fourth through the next to the last line of the data block con- 
tain the scaled data. Each line consists of 18 data points plus a checksum. The 
Fortran format is 1816, 17. The checksum in format I7 represents the algebraic 
sum of the 18 I6 values. 

Next to last line of block: If less than 18 values remain to complete the num- 
ber of points in the block, only as many I6 values as a re  needed a re  present, and 
no checksum appears on this line. 

Last h e  of block: This line is the checksum in the Fortran format of I7 for 
the short line produced above. If the number of points in the block is an integer 
multiple of 18, no short line was produced above, hence the checksum appears on 
the line with the data and this line is omitted. 

Note: E U  values are obtained by multiplying the data that start on the third line by the 
scale factor derived from the first line. 

Programmer's flow-chart reference: DUMP. 

Output SAMPLE channels in format type 2 

(;character 1 Operands 

$2 

DF6: An octal o r  decimal number representing the first channel data block to be 
output. Default value : zero. 

DF7: An octal o r  decimal number representing the last channel to be output. 
Default value: 80. Note: If DF7 exceeds the number of channels currently 
defined, only a s  many channels as a re  defined will be dumped. 

channels a re  to be output. Default value: Floppy disk (unit 3).  
DF8: Number of the output device on which the data from the SAMPLE subroutine 

Description: This command is similar to the $1 command except that the data a re  de- 
scaled by multiplying by the scale factor for the named location associated with the 
SAMPLE-channel number. The product is a floating-point number. A typical $2 
dump is shown in figure 19.  The format for each line within a channel's data block 
differs from that for a $1 dump. It is as follows: 

First line: The first through next to the last line of the data block contains the 
scaled data. Each line consists of 1 2  data points plus a checksum. The Fortran 
format is 12(16, I3), 18. The I3 value represents a power of 10  to which the I6 value 
should be raised to obtain the E U  data value; that is, -100.0 would appear a s  
-10000-02. The checksum in format I8 represents the algebraic sum of the 1 2  I6 
values plus the 12 I3 values. 

84 



Figure 19. - Display o f  data co l lec ted  by subroutine SAMPLE. Display was produced us ing  INFORM $2 comnand. System o f  example problem 
was used to  c o l l e c t  data.  



Next to last line of block: If less than 12  values remain to complete the num- 
ber  of points in the block, only as many 16/13 pairs as a re  needed are  present, and 
no checksum appears on this line. 

the short line produced above. If the number of points in the block is an integer 
multiple of 12, no short line was produced above; hence, the checksum appears on 
the line with the data, and this line is omitted. 

Last line of block: This line is the checksum in the Fortran format of I8 for  

Programmer's flow-chart reference: DUMP. 

86 

.. . ... . 



APPENDIX D 

COMMANDS TO CONTROL THE DATAO SUBRQUTINE 

Displays from the DATAO subroutine a re  referenced by channel number. The 24 
channels available are labeled 0 to 23 .  Assigned to each channel is a single named lo- 
cation, two EU values representing zero and full-scale outputs, an output-unit number, 
and a Dac channel number for  the output unit. These values for each channel must be 
defined by the operator before a display of that channel will occur. Only unit and chan- 
nel numbers corresponding to system Dacs a re  accepted. Channel numbers must be 
defined sequentially, but once defined may be modified, but not deleted, at any time. 
Only the highest number channel may be deleted. 

The DATAO control command processor is entered by using the > INFORM 
control-edit command. The computer returns a > sign instead of the underscore when 
the DATAO control command processor is in effect. The DATAO control commands 
a re  listed in this appendix. The underscore DATAO command will  return control to 
the INFORM control-edit command processor. 

Add a new channel definition 

1 Key charac te r  _ _  1 O p e r 1  I A I (Nal ,SFAEl ,SFAEZ,{Dnl ,(Dnnl 

Na: A one- to five-character name for a named location. See appendix B for ac- 
ceptable formats. Default value: The last-used name operand of previous 
commands. 

SFAE1: An SFAE for  an EU value to represent the 0-volt output of the display. If 
a name occurs within the SFAE, the current E U  value as located and descaled 
from the named-location definition is used as the numerical value within the 
SFAE . 

SFAE2: An SFAE for  an EU value to represent the 10-volt output of the display. 
If a name occurs within the SFAE, the current EU value, as located and de- 
scaled from the named location definition, is used as the numerical value 
within the SFAE. 

Dn: An octal or decimal unit number for one of the Dac units. Default value: The 
last value of Dn used for this DATAO channel. Channels that have not been 
previously defined since program load will generate an e r ror  if Dn is de- 
faulted. The DATAO @ command does not destroy this default value. 

87 



Dnn: An octal or decimal Dac number of unit Dn. Default value: The last value of 
Dnn used for this DATAO channel. Channels that have not been previously de- 
fined since program load will generate an e r ror  if Dnn is defaulted. The 
DATAO @ command does not destroy this default value. 

Description: The next sequential DATAO channel number supplied by the machine is 
defined to display the value of Na on a linear scale, outputing 0 volt when Na = 

SFAEl and 10 volts when Na = SFAE2. The channel number being defined is dis- 
played by the machine immediately after the delimiter that separates the IfAfl key- 
word from the operands. To protect recording equipment, the program limits the 
output to the -0.1 and 10.24  volt levels. No restrictions exist on the relationship 
of SFAEl to SFAE2; that is, SFAEl may be less than, greater than, o r  equal to 
SFAEB. SFAEl and SFAEB may also be negative to produce reversed displays. 
(For further information, see DATAO Displays section (p. 21) .) 

Programmer's flow-chart reference: ADDO, 01. 

Change a channel definition 

Key charac te r  

C 

Operands 

xx,CNal ,SFAEl ,SFAEZ,IDnl ,(Dnn} 

xx: The number of the DATAO channel to be redefined. 
Na: A one- to five-character name for  a named location. See appendix B for ac- 

ceptable formats. Default value: The named location currently defined for  
channel xx. 

a name occurs within the SFAE, the current EU value, a s  located and descaled 
from the named-location definition, is used a s  the numerical value within the 
SFAE. 

SFAE1: An SFAE for  an EU value to represent the 0-volt output of the display. If 

SFAE2: An SFAE for  an EU value to represent the 10-volt output of the display. 
If a name occurs within the SFAE, the current EU value, as located and de- 
scaled from the named-location definition, is used as the numerical value 
within the SFAE . 

Dn: An octal o r  decimal unit number for one of the Dac units. Default value: Unit 
number a s  currently defined for channel xx. 

Dnn: An octal or decimal Dac number of unit Dn. Default value: Dac number a s  
currently defined for channel xx. 

Description: This command is similar to the A command, except that the channel be- 

Programmer's flow-chart reference: CHNG. 
ing redefined must already have been defined using the A command. 

88 



Delete the last channel definition 

Key cha rac t e r  
I I I 

0 peran ds 

D None I 
Description: The last sequentially defined channel definition is deleted. Note: This 

command may be used any number of times in succession, as an automatic stop 
occurs when no channel definitions remain. 

Programmer' s flow-chart relerence : DROP. 

Delete all channel definitions 

I I Key cha rac t e r  I Operands 

8 I None I 
Description: All  channel definitions a re  deleted. 
Programmer's flow-chart reference: ATO. 

Display all channel definitions 

[ Key cha rac t e r  I Operands 

? 

DF12: Output device number. Default value: Line printer (unit 5). 

device DF12. The order of the values on each line of output is the channel num- 
ber, the output unit number in  octal, the Dac channel number, the name of the 
named location being displayed, the EU value for 0-volt output, and the E U  value 
for a 10-volt output. 

Description: The definitions for  all the currently defined channels a re  displayed on 

Programmer's flow-chart reference: ODATt-6. 

Save channel definitions 

I I Key charac te r  I Operands 
I I 

I I I (DF91 I 
I I -------- VERIFY? Yn,(DF103 I 

89 



.- 

DF9: The unit number of the output device on which the dump is to occur. Note: 
Either a comma o r  carriage return may follow DF9. Default value: Paper 
tape punch (unit 2). 

Yn: A single ASCII character, "Y" o r  "N", to indicate whether the dump just  pro- 
duced is to be verified. 

DF10: The unit number of the input device from which the dump is to be read. 
DFlO should only be entered if Yn is the ASCII character "Yrt. Default value: 
Paper tape reader (unit 2). 

Description: All the channel definitions are output on device DF9 in a relocatable 
binary-dump format. This dump may be saved and used to restore these operator- 
defined values at a later date by using the * (restore channel definitions) command. 
The VERIFY? query occurs after completion of the dump. If it is desired to check 
the dump for bit errors,  the dump should first be mounted onto device DF10, then 
an ASCII ''Ylr should be entered for the Yn mnemonic, followed by a value for 
DF10. The dump will then be read and checked against the values in core. If and 
only if an e r ror  occurs, CK is printed on the operator's input device, and the com- 
mand is terminated before the entire dump is read. If no verification is desired, 
an ASCII "N" should be entered for the Yn mnemonic and no DFlO should be en- 
tered. 

Programmer's flow-chad reference: PCHO. 

Restore channel definitions 

Key charac te r  Operands 1 { DF101 

DF10: Input unit number. Default value: Paper tape reader (unit 2 ) .  

read from device DFlO. The channel definitions, as read from this dump, replace 
those channels a s  currently defined. If a read e r ror  occurs during the load pro- 
cess, CK is printed on the operator's input device, all definitions and default val- 
ues are cleared to their initial values, and the command is terminated before the 
remainder of the dump is read. 

Description: A dump produced by the DATA0 (save channel definitions) command is 

Programmer's flow-chart reference: LODO. 



Accept INFORM commands 

Key:h&&ri 
Operands -= 

71 - None 
- - ~ 

Description: This command is used to change the input command string back to 

Programmer's flow-chart reference: CMDS. 
INFORM control-edit commands. 

91 



APPENDIX E 

COMMANDS TO CONTROL SUBJ30UTINE SAMPLE 

Variables sampled by subroutine SAMPLE are assigned channel numbers 0 to 79. 
Also assigned to each channel is a starting location for the core storage block to be 
used to save the samples. The length of the storage block is the same for all channels. 
This length must be set the first time the SAMPLE-control command processor is en- 
tered after a program load. If averaging is being used, that is, if the number of aver- 
ages specified is two o r  more, the defined block length must be at least two times the 
number of samples taken. The block length may be changed at any time by using the 
B command. The number of points to be averaged to determine a sample must also be 
defined at this time. If this number equals zero o r  one, averaging is not be used. 

The SAMPLE-control command processor is entered by using the < INFORM 
control-edit command. The computer returns a < sign instead of the underscore when 
the SAMPLE control command processor is in effect. The SAMPLE control commands 
a re  listed in this appendix. The underscore SAMPLE command will return control to 
the INFORM control-edit command processor. 

Add a new channel definition 

~ 

Key charac te r  Ope rands 

Na: A one- to five-character name for a named location. (See appendix B for ac- 
ceptable formats. ) Default value: The last-used name operand of previous 
commands. 

Ad: An octal o r  decimal address for the start of the storage block to be used to 
save variable Na's history. (See appendix B for acceptable formats. ) Default 
value: Address of the highest numbered channel defined plus the current block 
size. A n  er ror  will  occur if Ad is defaulted when no SAMPLE channels have 
been defined. 

Description: The next sequential SAMPLE channel number, a s  supplied by the ma- 
chine, is defined to store variable N a l s  history. The number of the channel being 
defined is displayed immediately after the delimiter separating the "A" key char- 
acter from its operands. The storage space to be used starts at address Ad. The 
next available storage location, which will not be used by this channel, is displayed 
after the command line. This value will only be applicable for the currently de- 

92 



fined storage block length and averaging mode. For further details see the 
SAMPLE Subroutine Control section. 

Programmer's flow-chart reference: ADDO, S1. 

Change a channel definition 

r i e r  I Operands 
- - 

-- ~. - _ _  3 1 xx, (Nal , (Ad1 

xx: The number of the SAMPLE channel to be redefined. 
Na: A one- to five-character name for a named location. See appendix B for ac- 

ceptable formats. Default value: The named location currently defined for 
channel xx. 

Ad: An octal or decimal address for the start of the storage block to be used to 
save Na ' s  history. Default value: The address currently assigned to chan- 
nel xx. 

Description: This command is similar to the A command preceding except that the 
channel being redefined must already have been defined using the A command. 

Programmer's flow-chart reference: CHNG. 

Delete the last channel definition 

I None I 1 D 

Description: The last sequentially defined channel definition is deleted. Note: This 
command may be used any number of times in succession, as  an automatic stop 
occurs when no channel definitions remain. 

Programmer's flow-chart reference: DROP. 

Delete all channel definitions 

Key character Ope rands  

(3 None 
_ _  - _  - 

Description: All channel definitions a re  deleted. 
Programmer's flow-chart reference: ATO. 

93 



Display channel definitions 

EE3 (DF121 

Key character Operands 

DF12: Output device number. Default value: Line printer (unit 5). 
Description: The definitions for all the currently defined channels are displayed on 

device DF12. The order of the values on each line of output is the channel num- 
ber, the output-unit number in octal, the Dac channel number, the name of the 
named location being displayed, the EU value for 0-volt output, and the E U  value 
for a 10-volt output. 

Programmer's flow-chart reference: ODAT1-6. 

Define block length 

1 1 I I Key character I Operands 

I I # AVERAGES= {No01 ------------ I 
No: An octal o r  decimal number to define the new storage block length. Note: No 

Noo: A positive octal o r  decimal number indicating the number of readings being 
should be terminated with a carriage return. 

averaged to determine a sample. It is displayed when the ? command is 
issued. Note: No0 should be terminated with a carriage return. 

Description: The storage block length for all channels is immediately changed to No, 
and No0 becomes the assumed number of averages being taken for each sample 
point (the actual number is controlled by the program calling SAMPLE). When 
the data are output using the $1 or  $2 commands, the data stored in the storage 
block are assumed to be the summations of No0 readings at each sample point. 
This assumption is made regardless of how the main program calls SAMPLE o r  
any previous condition of No and Noo in effect when the data were taken. If No0 is 
greater than one, the data are treated a s  double-precision integers, and are  divid- 
ed by Noo to obtain a single-precision integer value before output. Therefore, if 
Noo is greater than one, No must be twice the number of sample points; otherwise, 
No should equal the number of samples to be taken. 

Warning: In general, No and No0 should not be changed until after any data 
collected are output using the $1 and $2 commands. Otherwise, the output may be 
incorrect. It is permissible, however, to change No and No0 at any time provided 

94 



the operator realizes these consequences. (See the SAMPLE calling sequence for 
additional information, p . 1 2 .  ) 

Warning: The starting location of each storage block is I not changed. Hence, 
increasing No from its present value may result in overlapping blocks unless suffi- 
cient space was originally allocated for each block. The program has no provision 
to determine whether storage bounds may be exceeded, and it is up to the operator 
to insure that each block maintains its integrity. If No0 is increased from one to 
greater than one, the number of samples fitting in a storage block is automatically 
cut in half. The main program need not be altered if it uses the abort-return loca- 
tion to determine when all samples a re  in, since the return to this location will 
automatically occur sooner. 

Programmer's flow-chart reference: SZE. 

Save channel definitions 

t- I 

DF9: The unit number of the output device on which the dump is to occur. Note: 
either a comma or carriage return may follow DF9. 
tape punch (unit 2). 

Yn: A single ASCII character, r fYfr  or "Nfr , to indicate whether the dump just  pro- 
duced is to be verified. 

DF10: The unit number of the input device from which the dump is to be read. 
DFlO should only be entered if Yn is the ASCII character rfYrf .  Default value: 
Paper tape reader (unit 2). 

Default value: Paper 

Description: All the channel definitions a r e  output on device DF9 in a relocatable 
binary-dump format. This dump may be saved and used to restore these operator- 
defined values at a later date by using the * (restore channel definitions) command. 
The VERIFY? query occurs after completion of the dump. If it is desired to check 
the dump for bit errors,  the dump should first be mounted onto device DF10, then 
an ASCII rfYff should be entered for the Yn mnemonic, followed by a value for DF10. 
The dump will then be read and checked against the values in core. If and only if 
an e r ror  occurs, CK is printed on the operator's input device, and the command is 
terminated before the entire dump is read. Lf no verification is desired, an ASCII 
lfNff should be entered for  the Yn mnemonic and no DFlO should be entered. 

Programmer's flow-chart reference: PCHO. 

95 



Restore channel definitions 
- ~-~ 

I Key charac te r  Ope ran ds 

C DF101 E------ - 

DF10: Input unit number. Default value: Paper tape reader (unit 2). 

is read from device DF10. The channel definitions, as read from this dump, re- 
place all existing channel definitions. If a read e r ror  occurs during the load pro- 
cess, CK is printed on the operator's input device, all definitions and default val- 
ues a re  cleared to their initial values, and the command is terminated before the 
remainder of the dump is read. 

Description: A dump produced by the SAMPLE ! (save channel definitions) command 

Programmer's flow-chart reference: LODO. 

Accept INFORM commands 

I Key charac te r  I Operands 

Description: This command is used to change the input command string back to 

Programmer's flow-chart reference: CMDS. 
INFORM control-edit commands. 

96 



APPENDIX F 

DESCRIPTION O F  REQUIRFD SUPPORTIVE SOFTWARE 

Subroutines required: 
StandardFortran:  L$22, H$22, M$22, D$22, A$22, S$22, N$22, C$12, C$21, 

CIPHER input-output l ibrary: MESAGE , PUNCH, LOAD, VERIFY, INPT,  AIP, 

Since complete descriptions of the functions of all the routines listed here are con- 
tained in appendix H, only a n  overview of the routines' application is given here .  

In the program descriptions given in this appendix DAC, as assembly language 
pseudo-operation, is used to  represent a direct  address  constant produced by the pro- 
gram loader. The value s tored in the reserved location is equal to  the address  of the 
parameter  named in the DAC statement. In addition to  the machine's hardware A, By 
and X regis ters ,  pseudoregisters are defined in map o r  page zero memory as follows: 

C$42, C$24 

AOP, OUTOO, OUT11, OUT22, TTYR, FDDH, FDD11, FDD22, FDDEND 

Lo cat ion 

0 
1 
2 
3 

4 
5 
6 
7 
8 

Description 

Common core 
Common core  
Fir st floating-point accumulator 
Second floating-point accumulator 
Third floating-point accumulator 
Fourth floating-point accumulator 
Return address  reg is te r  
Output-device number 
Input -devic e numbe r 

Regi st e r 

V 
W 

AA 
AA 
BB 
BB 

R$TN 
OUT$ 
I" 

Many arguments passed between subroutines are held in these regis ters  fo r  t ransfer .  

Standard Fortran Routines 

L$22 
Calling sequence : 

CALL L$22 
DAC operand 

97 



H$22 
Calling sequence : 

CALL H$22 
DAC storage 

Calling sequence : 
M$22 

Set AA = multiplicand 
CALL M$22 
DAC multiplier 
AA = product 

Calling sequence : 
D$22 

Set AA = dividend 
CALL D$22 
DAC divisor 
AA = quotient 

Calling sequence: 
A$22 

Set AA = addend 
CALL A$22 
DAC addend 
AA=sUm 

s $22 
Calling sequence : 

Set AA = minuend 
DAC subtrahend 
AA = difference 

N$22 
Calling sequence: 

Set AA = value to be negated 
CALL N$22 
AA=-AA 

Calling sequence : 
C$12 

Set A = the integer value to be converted 
CALL C$12 
A A = A  

c $21 
Calling sequence : 

98 



Set AA = floating-point value to be converted 
CALL C$21 
A = the integer of AA 

c$42 
Calling sequence : 

Set (A, B) = double-precision integer 
CALL C$42 
AA = (A, B) 

Calling sequence : 
Set AA = floating-point value to be converted 
CALL C$24 
(A, B) = the double-precision integer of AA 

CIPHER Library Input-Output Routines 

MESAGE 
Calling sequence : 

Set OUT$ = the output-device number 
CALL MESAGE 

(X) Data, ASCII characters, stored 2 per word 
Data, 0 - to signify end of message. Note: These data are  not needed if 

the last eight bits of last data statement above are  zero 
Description: MESAGE provides the assembly-language programmer a means of 

printing table headings or messages with all the ease and convenience of For- 
tran format statements, but with a vastly reduced core requirement. Device 
flexibility is achieved through the use of the AOP subroutine. In addition, 
since the message to be printed appears a s  data statements representing the 
eight-bit ASCII code following the CALL statement, a convenient comment in 
the form of the actual message is automatically inserted in the assembly list- 
ing. This message aids in identifying parts of the program. 

Subroutines required: AOP 

Calling sequence: 
PUNCH 

(W) Set A = start address 
( X )  Set B = last address punched 
(Y) Set X = outpubdevice number 

CALL PUNCH 

99 



(Z) Data, number of spaces in leader 
Subroutines required: Set AOPX, LOAD, VEMFY 

Calling sequence : 
LOAD 

(W) Set A = start address 
(X) Set B = end address 
(Y) Set X = input-device number 

CALL LOAD 
Error-in-reading return point 
No-error, o r  normal-return point 

Subroutines required: Set AIPX, AOP, VERIFY, MESAGE 

Calling sequence : 
VERIFY 

(W) Set A = start address 
(X) Set B = end address 
(Y) Set X = input-device number 

CALL VERIFY 
E rror-in-verification return point 
No-error o r  normal-return point 

Subroutines required: Set AIPX, LOAD, MESAGE 
Description for  PUNCH, LOAD, and VERIFY: These routines are a packaged set 

that generates dumps designed to be read by a person o r  by Fortran-coded 
programs. 

AIP 
Calling sequence : 

Set IN$ = input-device number 
CALL AIP 
A = 1 6  bits from the IN$ device 

AIPR 
Calling sequence : 

Set IN$ = input-device number 
CALL AIPR 
A = A + 8 bits from device X 

AOP 
Calling sequence : 

OUT$ = output-device number 
Set A = 1 6  bits for  the OUT$ device 
CALL AOP 

100 



AIPX 
Calling sequence : 

Set X = input-device number 
CALL AIPX 
A = 1 6  bits from device X 

AOPX 
Calling sequence : 

Set X = output-device number 
Set A =.16 bits for device X 
CALL AOPX 

AIPRX 
Calling sequence: 

Set X = input-device number 
CALL AIPRX 
A = A + 8 bits from device X 

INPT 
Calling sequence : 

Set IN$ = input-device number 
CALL INPT 
A = 8 bits from the IN$ device 

Description for  AIP, AOP, AIPX, AOPX, AIPRX, and INPT: These surboutines 
a re  designed to provide a moderate level of device-free I/O capability to the 
assembly-language programmer. By using this software package, the 
assembly-language programmer frees himself of the highly specialized and 
machine-dependent nature of many 1/0 functions. By having at least two 

channels of device-free I/O, one immediately gains the flexibility of software 
and ease of programming normally only encountered on large computing sys- 
tems, such as the IBM TSS 360/67 systems. The device flexibility that 
INFORM enjoys is directly attributable to use of these routines. 

OUTOO 
Calling sequence : 

(X) Set A = an octal value to be printed 
CALL OUTOO 
Set OUT$ = output-device number 
DAC, number of least-significant digits printed 

Subroutines required: Set AOP 
OUT10: See OUTOO 
OUT11 

Calling sequence : 

101 



Set OUT$ = output-device number 
Set A = an integer to be printed 
CALL OUT11 
DAC number of significant digits printed 

Subroutines required: OUT44 

Calling sequence : 
OUT22 

Set OUT$ = output-device number 
(X) Set AA = floating-point real value printed 

CALL OUT22 
(Y) DAC format word. The mantissa length is the least-significant six bits 

of the format word. The exponent length is the next three bits. The 
remainder of the format word is used to indicate the position of the 
decimal point and whether it is printed. 

Subroutines required: OUT44 

Calling sequence : 
OUT12 

Set OUT$ = output-device number 
(X) Set A = integer to be printed 

CALL OUT12 
(Y) DAC format word (See OUT22 format word. ) 

Subroutines required: OUT22, C$12 

Calling sequence: 
OUT21 

Set OUT$ = output-device number 
(ZZ) Set &I = floating-point real value printed 

CALL OUT21 
(Y) DAC number of significant digits printed 

Subroutines required: ( 3 2 1 ,  OUT44 

Calling sequence : 
OUT44 

Set OUT$ = output-device number 
(ZZ) (A, B) = double-precision integer printed 

CALL OUT44 
(Y) DAC number of significant digits printed 

Subroutines required: AOP 
Description of the OUT= routines: This portion of the CIPHER 1/0 package is 

intended to give the assembly-language programmer a moderate amount of 
format flexibility when numbers need to be displayed in a man-machine inter- 

102 



face situation. By developing this set of highly efficient, general purpose rou- 
tines, the generally annoying and time consuming task of writing code to print 
numbers in assembly language is eliminated. Although they do not offer the 
complete flexibility available in Format format statements (10-digit mantissa 
maximum, no leading zero suppression) they do offer the same ease of pro- 
gramming, without requiring the vast amount of core associated with format- 
decoding routines. The inclusion of a double-precision integer format and the 
exclusion of a double-precision, floating-point format should more closely 
tailor these routines to assembly-language requirements than Fortran format 
decoders. 

The output is sufficiently flexible that it should meet a wide range of aes- 
thetic as  well as practical needs. The exclusion of the decimal point and ex- 
ponent sign from the floating-point format may offend the sensibilities a bit, 
but this was done to meet the requirements of the FDDxx series of subroutines 
and thereby simplify them considerably. In addition, a small increase in out- 
put speed for slow 1/0 devices is achieved. If these considerations a re  not 
requirements, the decimal point and exponent sign can easily be inserted. 

TTYR 
Calling sequence: 

Set IN$ = input-device number 
CALL TTYR 

(Y) DAC floating-point storage 

(W) X = delimiter character causing return 
( Z )  B = type of entry information: B > 0 indicates decimal entry; B < 0 indi- 

( Z Z )  AA = number input 

cates octal entry; B = 0 indicates no entry (AA = 0) 
Subroutines required: AIP, MESAGE 

Calling sequence: 
TTYRB 

Set IN$ = input-device number 
(X) Set A = the first input character 

CALL TTYRB 
(Y) DAC floating-point storage 

(ZZ) AA = number input 
(W) X = delimiter character causing return 
( Z )  B = type of entry information: B > 0 indicates decimal entry; B < 0 indi- 

cates octal entry; B = 0 indicates no entry (AA = 0) 

I I1 1111.111111 1111111- I I 1 1 1  I I I, 

103 



Subroutines required: TTYR 
Description: TTYR is a versatile routine that finds application whenever the man- 

machine interface deals with single-precision integers o r  floating-point nu- 
merical values entered by man. Its free-format style of number entry has al- 
ready been amply described by the description of octal-or-decimal numbers in 
appendix B. The program can return information to the calling program de- 
scribing the type-of-number entry, the delimiter that caused branch back, and 
the value intended. This ability, when coupled with the TTYR2 entry point, 
which accepts a previously input character, yields virtually limitless use of 
the program. Input device independency is achieved through use of the AIP 
subroutine. 

FDDH 
Calling sequence: 

Set OUT$ = output-device number 
(W) Set A = identification number 

Set B = number of digits for A output 
CALL FDDH 
Data, number of data words per line 
Data, coded integer. Least significant six bits, the number of digits in 

mantissa of the length of integers excluding sign; next three bits, the 
length of exponent less sign; remaining bits, number of digits in 
checksum excluding sign. 

Subroutines required: OUT11, all the FDDxx type subroutines 

Calling sequence : 
FDDEND 

Set OUT$ = output-device number 
CALL FDDEND 

Subroutines required: MESAGE, all the FDDxx type subroutines 

Calling sequence : 
FDDl l  

Set OUT$ = output-device number 
(X) Set A = integer to be output 

CALL FDDll  
Subroutines required: OUT11, MESAGE 

Calling sequence : 
FDD2l 

Set OUT$ = output-device number 
(ZZ) Set AA = floating-point value to be output 

Subroutines required: OUT21, MESAGE 

104 



FDD22 
Calling sequence: 

Set OUT$ = output-device number 
( Z Z )  Set AA = floating-point value to be output 

CALL FDD22 
Subroutines required: OUT22, MESAGE 

Calling sequence : 
FDDl2 

Set OUT$ = output-device number 
(X) Set A = integer to  be output 

CALL FDDl2 
Subroutines required: FDD22, C$12 
Description of the FDDxx subroutines: These subroutines are intended as a 

general-purpose software package to produce dumps of data that will undergo 
fur ther  processing by being read into another computer. All characters are 
produced using the ASCII code, and the format of the numbers is that of the 
OUTxx routines, which is easily interpreted using standard-Fortran integer- 
read statements.  Each line of output is terminated with carriage return, line 
feed, and XOFF characters. The XOFF character  is provided for  automatic 
control of hardware that can read dumps into a time-share system. Persons  
who wish to  use this postprocessing capability should tailor the line terminator 
characters to the i r  systems.  

105 



APPENDIX G 

FLOW CHARTS 

Flow Chart Symbols 

Symbols used in the flow charts a re  taken from ANSI Standard X3.5-1970 (ref. 2) 
except as noted below. 

Names of subroutines a re  located above and to the left of the block: 

Arguments that a re  passed to and from subroutines are indicated in parenthesis by the 
enter and exit symbols; that is, 

RETURN 
ENTER 
ABCD 

Indicates that X is received from the calling program and Y, Z are  returned. Note: 
This notation does not refer to arguments held in common core. 

The following conventions a re  used to indicate various addressing modes. 

ABCD Refers to the integer, floating point, etc. , contents of memory location(s) 
ABCD. 

[ ABCD] Indicates that memory location ABCD contains the address of the memory 

Refers to the Ith value in array ABCD. 

cell or cells which contain the value desired. 

ABCD(1) 

106 

. . . 



.- 

(A, B) Is used when4t is required to show how two integer words are  concatenated 
to form a double-precision integer, floating-point real, or other two- 
word value. 

----- Fncloses a group of processing functions designed to accomplish a specific 
task. 

When a connector symbol contains an asterisk, the flow proceeds to the 

@ point whose address is in RTRN; that is, RTRN contains a word which 
points to the proper flow point. 

Flow Chart  Notes 

(1) The actual method used to perform the packing is immaterial, since the NAME 
subprogram is the only place where packing is done. The PNAM routine, which is 
used to print a name, is the only other routine in addition to NAME which needs to be 
modified if packing different from that described below is used. Lf we label a 16-bit 
word such that the most significant bit is 1 and the least significant bit is 16, then the 
method used in the SEL 810B is as follows: 

Bits(3 - 8) of BUF(0) go into bits(l1 - 16) of BUF(0) 
Bits(9 - 14) of BUF(0) go into bits(l1 - 16) of BUF(1) 
Bits(l5 and 16) of BUF(0) go into bits(l1 - 12) of BUF(2) 
Bits(1 and 4) of BUF(1) go into bits(13-16) of BUF(2) 
Bits(5 - 10)  of BUF(1) go into bits(l1 - 16) of BUF(3) 
Bits(l1 - 16) of BUF(1) go into bits(l1 - 16) of BUF(4) 

(2) A particularly efficient means of implementing this block is to do an indexed 
branch using the truncated ASCII delimiter code passed back from the NAME subrou- 
tine as the index. For further details consult the PROGRAMMING NOTES section. 

(3) Recall that each element of the TABl, TABB, and TAB3 data tables for which 
this routine is used is only 8 bits long; hence, 2 elements are stored in one 16-bit 
word. Even indices are stored in the most significant bits, odd the least. 

loop (LIl5) to format the table output, add an increment to the core address pointer By 
and determine when all values have been printed. The CDll is used to modify the re- 
turn point of L115 so that different interpretations to the core values and different 
printouts can be implemented efficiently. U s e  of CDll is thus similar to use of RTRN. 

along with ACUM and CFMT, occur sequentially in core. Therefore, the values of all 

(4) The LIO, LU, LI2, LI4, LI6, LI7, L18 program branch points use the same 

(5) The LQC, "1, NAM2, SF , TABl, TAB2, TAB3, LGTH, and DFO tables, 

107 



these parameters will be saved on the relocatable binary dump produced by the Pu 
subprogram. 

( 6 )  XO1, DA1, NCH, and CHM contain the addresses of S l y  TORG, NSCH, and 
SlDX (with postindexing affixed) o r  the addresses of 01, DKl, NDCH, and DIDX (with 
postindexing affixed). The values depend on whether the command processing routines 
(ATO, ADDO, CHNG, DROP, LODO, PCHO) are initialized to process SAMPLE o r  
DATAO control commands. All references to XO1, DA1, NCH, and CHM are done 
indirectly, thus effectively changing the operand for the above mentioned routines. 
Also see the DATAO and SAMPLE command processor section under program struc- 
ture. 

(7) The DK1, DEXP, DK2, DKBB, DIDX, DCHN, and DDAC tables, along with 
location NDCH, occur sequentially in core. The TORG and SIDX tables, along with 
locations NAVG, AVLH, SVLH, SIZE, and NSCH, also occur sequentially in core. 
Therefore, the values of the table set referenced (see note 6 )  will be saved on the re- 
locatable binary-dump tape produced by the P U  subprogram. It is extremely important 
that the tables and locations mentioned occur in the specified order so that an e r ror  
occurring when reloading dumps will not adversely affect machine operation; that is, 
to prevent SAMPLE from erroneously storing on top of program instructions o r  DATAO 
from producing extraneous output to random devices. 

(8) The DATAO subroutine achieves rapid output capability by executing machine- 
coded instructions generated in the 01 subroutine. These instructions a re  intended to 
reduce the required Y = Ax + B type calculation to one of integer arithmetic that can 
be executed at high speed. This high-speed capability is necessary since DATAO is 
designed to display the dynamic behavior of the named locations selected. 

GSF subroutine, which passes an argument back to indicate the result of the test. 
(10) Note that if the default value X, supplied from the calling program, is not 1, 

2, o r  3, this routine will branch to EROR. This is important, as calling programs 
depend on GTAB to validate their default values. Also, this routine may be forced to 
not permit defaults by supplying an erroneous default value. 

(9) This test, which may involve several instructions, is actually performed in the 

108 



ENTER INFORM 
wi th  "FORMAT" 

(a r g um> 

- "CR" .. ~ 

- @ -- AT 
- . -- CALC 

- -- EOU 
- > --  ODAT 

-- W R Y  

-- FORM 
-- EVT 

- t -- UARW 
-"Space" -- DEFN 
- ! -- PNCH 
- " -- OUTE 
- I -- DUMP 
- 7'0 -- DFMT 
- & -- D l S P  
- ( -- OTBL 
- ) -- CTBL 
- * -- LOADS 
- , -- ADD1 
- - -- CRTR 
- I -- LIST 

- . .--, 

- i - -  SPL 

5 -- VT 

-Other  -- EROR 

I ~ 

mode select 
swi tch 

Interactive mode 
set EROR and 
a l l  command 
processors to  jump 
he re  when  f in ished , 

Save p r q r a m  
counter  for  
th is  place in 
RTRN 

<- 

MESAGE 

Input  name f rom 
operator. Pack in 
BUF. Save delimiter 
in DLMZ 

I - 

DLMZ equal 

\ I 

1 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

Inpu t  operator's 
mode select .*- switch 

I -  

- 

switch 

Reset 

-,.- RETURN 

1 

Decode format type 
f rom INFORM's 
"FORMAT" argument. 
Save in TFMT 

Decode table No. 
lrOm INFORM's 

Save in TABN 

Decode output  u n i t  
number f rom INFORM's 
"FORMAT" argument. 
Save in OUT$ 

If TFMT. TABN. o r  OUT$ 
= 0. set i t  ~ to DFO. DF1. 

109 



I-- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Set STOP equal to I array of addresses 
of named locations 

I in data table TABN; 
Set L =  number of 

Set Dac 85 pointer to 
TABN; STOP = length 

$y-+- 
EROR 

In i t ia l ize loop 
counters 
I = K =  L . 0  

Obtain I t h  indexing 
variable f rom data 
table. Save as J 

J, c\iL 
Yes 

STORILI - iLOCIJlI 2 
indexing variable 

L - L t l  

I 

Iwp counter  

For 1=0 to IL-11, set 
STORIII = ISTORIIII 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I _- 

P r i n t  heading d 
names for  data table 
TABN 

I 
I I 

Get J. the K th  
indexing variable 
f rom TABN. Test 
J and p r i n t  "CRLF" 
o r  space codes 

MESAGE J i s  "CRLF" 
i s  named 

location 

P r in t  name for 
indexing variable 

MESAGE 

Add increment  
to l c q  counter 

K = K t l  

9-Q 

No 

P r i n t  "CRLF" on 

/ 
/ 

/ 
/ 

110 



Pr in t  data for  data 
table TAEN l o r  TMFT 
of 1, 2. and 3 on 
OUTS device 

A I . 1  

J i s  I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
L 

c:)7~. P r i n t  one space ~ ~ 

for indexing 
variable J 
on OUT$ device 

P r in t  ‘ ! = u  on 
OUT$ device 

of STORILl using 
scaling 01 Jth 
name on OUT$ 

Increment 
indexing variable 

L = L t l  

Remove this funct ion 
to reduce format 
type 3 to 18 characters 

i f  
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IDH 

Start dump on OUR 
device ID No. = 5 digits 
of l. 12 wordsll ine. 
code = ‘7205 

OUR device 

Increment 
indexing variable Dump coded integer word 

indicating 1 channel  

F D D l l  

FDDEND 

C lme dump heading. 
P r i n t  check sum Increment 
l o r  preceding word loop counter 

Obtain SVSF. a l imited 
scale factor l o r  
indexing variable J 

Convert STORILI to 
floating p r i n t  

AA = STORIL) 

Calculate EU 
AA = AA. SVSF 

111 



Except for ODAT and SPL, the command processors for the INFORM commands follow 
in alphabetical order. 

Obtain indexing variable 
fo r  name operand. Use 
zero for default. Save 

I I in INDX 

Add INDX t o  open 
data table si 
6 

Ver i f y  proper pref ix 
command format. 
Put command del imiter 
in DLM2 

Obtain B, a validated 
table number  f rom operator. 
Use 1 f o r  defaults I; DLM2 = del imiter 

i l  Obtain B, a validated 
table number  f rom operator. 
Use 1 f o r  defaults 

DLM2 = del imiter 

I 

Terminate command 
l i n e  

DTLH = B 

Set table length 

112 



No such 
command 

Operand may not 
be defaulted 

8 
character f rom 

No 
I 
I 

Verify proper prefix 
command format; put  
command delimiter 
in DLMZ 

I 

I '  com ma I' 

on ASCII 

Obtain AA, an SFAE 
from operator. Use 
EU values for names 

of AA i n  octal 

~~~ 

Obtain BB value of 
SFAE from operator. 
Use address for 
names 

Convert BB 
to integer 

B = BB 

Pr in t  B in octal 

P r in t  AA in floating 

6 
Obtain AA, an SFAE 
value from operator; 
use EU value for names 

113 



operand defaulted 

Obtain indexing variable 
for name. Save in B. 
Branch to EROR if 
name undefined 

II 
TADD \1 

Add B to 
open data 
table 

, 
TADD 

Add '377 
to open 
data table 

Veri fy  and complete 
command input 
format 

Close a l l  data 

DTLH < 0 

RTRN 

114 



Clear incrementers 
I N C l  = 0 
INCZ = 0 

'I 

Save name 
operand 
TNA = BUF 

Yes 

-~ \1 
Clear indexing 
variable 

ASNX = 0 

Establish indexing 
variable 

ASNX = ACUM 

\1 
Increase number- 
of -def i n i t ions 
incrementer 
INCZ = INCZ + 1 

__ . , 
~~ 

Increase default- 
address incrementer 

I N C l  = I N C l  t 1 

MESAGE 

p r i n t  "::;*'I 

I 

Establish default 
indexing variable 

DFIX = OLDX 

Establish defau It 
address 

TADR = LOC(DF1X) 
+ I N C l  

Establish default 
scale factor 
SVSF = SF(DFIX) 

~ ADRS 

Input address. Save 
in B. Save delimiter 
in DLMZ 

No 

Yes 

Assign new 
address 
TADR = B 

I 

in octal on 

115 



Obtain scale factor 
AA from operator. 
Save delimiter in 

I 

Terminate 
command 
l ine  

i 4 

Assign new 
scale factor 
SVSF = AA 

~ ~~ 

3/< 

indexing variable 
OLDX = ASNX 

6 RTRN 

Set indexing variable 
ASNX to  indexing 
variable of defined name 

indexing variable 
DFIX = ASNX 

MESAGE 

Get name from operator. 
Pack in BUF. Save 
delimiter in DLMZ 

Assign new name 
TNA = BUF 

variables for 

\ 

116 



I U cj .“RTRN 

Terminate 
command l ine  

Modify default 
DFX(1) = A 

Obtain indexing variable 
for name operand. Use 
0 for defaul t  Save in B 

Revise default 
indexing variable 

OLDX = B 

Display definit ion for 
indexing variable B 
on OUT$ device 

117 



- a  

. ,  

character from 
c+.?rator's keyboard 

PRFX ~- 

Verify proper prefix 
command format 
Put command 
delimiter i n  DLM2 

I 

Set last channel 
default 

K = m in  of 
iINSCH-11. DF7I 

Obtain positive integer 
I from operator. Use 
DFIX61 for defaults 

6 I < NSCH 

Obtain positive integer 
J from operator. Use 
K for defaults 

Cannot dump more 
channels than defined 

(> J < NSCH 

Set OUT$ to uni t  number 
from operator. Use DF018l 
for defaults. End command c l ine 

JSVLH > o 

Start dump on OUT$ 
device. ID No. = 5 
digits of SIZED. 12 
wordslline. code = '7% 

1 

Start dump on OUT0 
device. ID No. = 5 
digits of SIZE , 12 
wordsiline code = '7205 

F D D l l  

Dump coded integer 
for 1st and last 
channels coming 
on OUT$ device. L Word = 1W.I  + J 

Close dump heading. Pr int  
checksum for proceding word 

;SF .1 
Obtain scale factor 
for name whose 
indexing variable I S  

SIDXIII. Save i n  
SVSF 

Add increment 
to channel 
number being 
dumped 

I - I t 1  

Initialize minor 
loop counter 

Clme previous dump block. 
P r in t  checksum if required 

Terminate dump. 
Pr int  last 
checksum 

Yes (> K > SIZE 

118 

.. .. 



SVLH > 0 

NAVG = 1 

Convert double- 

B = [TORG(I) + K1 
dividing by NAVG 

L--7--- I 

Add increment to 
minor loop counter 

K = K + 1  

Convert B to 
floating point EU 
B B  = B x SVSF 

Pr in t  EU value Of 

A using scaling of 
jth name. Use 

Dump BB on 
OUT$ device 

119 



Ver i f y  and complete 
command inpu t  format 

Disable variable t r i p  
by resetting VTLH 

,PRFX 9 
Ver i f y  proper pref ix 
command format. Pu t  
command del imiter in 
DLMZ 

2TA B + 
Obtain TFMT, a validated 
table format, f rom operator. 
Use DF3 for defaults 

GTA B 
I I  

Obtain TABN, a validated 
table number,  f rom operztor 
USE DF4 fo r  defaults 

Set OUT$ to u n i t  
number  f rom operator. 
Use DF5 fo r  defaults. 
End command l i n e  

120 



valuesliine 

Set address 
incrementer 

Verify proper prefix 
command format 
Put command delimiter 
in DLM2 

I?DRS-- 
Obtain address E from 
operator. Put delimiter 
in D M 2  

address 

Revise start and 
end addresses 

SADR = EADR = E 

Obtain address B from 
aperator. Put delimiter 
in DLMZ 

I 

address 
defaulted 

Update end 
address 
EADR = B 

Obtain positive integer 
FMTY format type from 
operator. Use FMTY 
for defaults. Set DLMZ 

Obtain scale factor 
AA from operator. 
Put delimiter in 

Change scale factor 
of display 

OLSF = AA 

L 
Set OUTS to un i t  
number f rom operator. 
Use D F l l  for defaults. 
End command line 

0- uo 
1 - LI1 
2 f L I Z  
4 - L14 
6 - L16 
7 - L17 
8 - L I 8  I Other 

Initialize. print, and 
get f i rst  address E 

Note 4 

Save prcgram 
counter for th is 

place in C D l l  

of B i n  octal on 
OUT$ device 

Initialize. print, an 
get f i rst  address E 

counter for this 
place in C D l l  

Convert contents of 
B to floating point 

EB = . I B I  

scale BE 
BE = BE ' OLSF 

point on OUTS 
device 

P r in t  2 spaces 
on OUTS device 

121 



Initialize, p r in t  and get 
f i r s t  address B 

Save program 
counter for th is  
place in C D l l  

I 
Convert contents of B to 
floating point and scale 

BB = IBl132768.0 

Increase 
address 
incrementer 
J = J + 1  

Initialize, print, and 
get f i r s t  address B L 

\1 Note 4 

Save program 
counter for th is  

place in C D l l  

(342 \1 
Convert double-precision 
integer contents at B to 
floating point 

BB = ( I B I ,  I B  + 11) 

I 

Increase 
address incrementer 

J = J + 1  

Init ialize, pr int ,  and 
get f i r s t  address B 

Save p r q r a m  
counter for  th is 

place in C D l l  

double-precision 
integer contents 
at B as double- 

MESAGE 

P r i n t  2 
spaces on 
OUT$ device 

Set number of 
val uesl l ine 

I 
L I l l  \1 ~- 

Initialize, print, 
and get f i r s t  
address B 

4 Note 4 

Save program 
counter for this 
place in C D l l  

AOP 

Pr in t  contents of 
B as two A S C I I  

122 



address for 
this call in 

lnitailize values 

Print "CRLF" on 
OUTS device 

Initialize 
core address 
pointer 

B = SADR 

l i  
No 

pointer 
B = B + J  

B < EADR 

No 

MESAGE 4 

Print "CRLF" on 

MESAGE 

Print "CRLF" on 
OUTS device 

Yes 

I 

UNll  

Set X to unit 
number from 
operator. Use D F l l  
for defaults. End 
command line 

I 
Disable variable-trip 
mode by resetting 
VTLH 

Note 5 

from device X 
into core between 

123 



II 1111 

PREFX 

Ver i fy proper pref ix 
command format. 
P u t  command del imiter 
in DLMZ 

GTA B \1 
Obtain B, a validated 
table number f rom 
operator. Use 1 fo r  
defa u Its 

D L M Z  = del imiter 

Terminate 
command l i n e  

Open data 
table 

Ver i fy proper prefix 
command format. 
P u t  command 
del imiter in DLMZ 

Complete command and 
produce b inary  dump 
of core f rom LOC to 

PRFX 

Ver i fy  proper pref ix 
command format. Put 
command del imiter in 

Set OUT8 to u n i t  
number f rom operator. 
Use DF12 fo r  defaults. 
End command l ine  

U s e  S T T S l A C U M  - 1) times 

Display def in i t ion for  indexing 
variable I to ACUM - 1 on 
OUT$ device 

-7 RT RN 

124 



Obtain indexing variable 
for name operand Use 
OLDX for defaults. Save 
in INDX 

LOCIINDXI 
in octal on 

MESAGE 

P r i n t  "WAS ='I 

on OUT$ device 

of LOCIINDXI in  
Octal on OUT$ 

device 

Obtain AA, an SFAE 
from operator. Use 
EU value for names. 
Save delimiter in D L M P  1 

Terminate 
command l i ne  

L 

Scale and convert 
AA to integer 
A * AA/ISFlINDXI. 

EXP(INDX1I 

and "NOW -" 

on OUT$ device 

P r i n t  A in 
octal on OUTI 
device 

Stor A 
ILOCIINDXII = A  

6 

r 

Verify and complete 
command input 
format 

DTLH > 0 

SETU 

Set DAC as pointer 
to table No. DTLH 
B = length of table 
No. DTLH 

A l l  tables 
are closed 

Decrease table 
length. 

B = 6-1 
LGTHIDTLHJ = B 

Note 3 

Obtaint(., the 
IB - 11 indexing 
variable from data 
table NO. DTLH 

=-I - 
A is l ine 
terminator. 
Stop chopping 1 table 

125 



Verify proper prefix 
command fo rma t  
Pu t  command delimiter 
in DLMZ 

OLDX for defaults. Save 
in  INDX 

No such t r i p  comparison. 
Improper format 

I 

- - 6 - 2  

t 
MATH 

Obtain AA. an SFAE EU 
value from operator. 
Use cu r ren t  EU value 
for names DLMZ = 
delimiter 

CKCR 

Terminate 
command 
l ine 

CDZO 4 
Scale and convert 
AA to i n t q e r  

A; AA 
SFIINDX), EXP(1NDX) 

J I I  
Set t r i p  constants 
TRIP = A 
EQTY = 6 

ADDR = LOCIINDX) 

Display "HLT' 
on OUTS device 

character f r m  

Ver i fy and complete 
response l i ne  

"N" 
A S C I I  

INST - "Halt" 
instruct ion 

,<{> 
No 

7- - - - ---- 
No previous t r i p  

EQTY<DOn 
load only 

1 26 



Q 
Revise default 
indexing variable 

OLDX = INDX 

Print "CRLF" on 

The ODAT and SPL command interpreters and their command processing routines 
follow in alphabetical order. See the DATA0 and SAMPLE command processor section 
under PRQGRAM STRUCTURE to understand the flow through the command processors. 

127 



I 
I 

Yes - 
Obtain name f rom 
operator. Pack in 
BUF. Save delimiter 
in DLM2 

SUFX J 
Obtain indexing 
variable for  name 
operand. Use B 
for  defaults. Save 
in INDX 

-- 
Note 6 

~ ~~ 

o r  01 

Complete command by 
executing subrout ine 
whose address i s  in 
xo1 

I 

Set channe l  
incrementer  
CMDC = 1 

command format. 
Pu t  command 
del imi ter  in D I M 2  

Display "0" 
on OUT$ device 

Set c u r r e n t  

digits of IDXO on 
OUT$ device 

P r i n t  2 spaces 
on OUT$ device 

B = OLDX 

Revise channe l  count  
INCHI = INCH1 + CMD 

Assign indexing 
variable to channe l  
ICHIXI I IDXOI-  INDX 

Revise default 
index ing variable 

Ver i fy  and  complete 
command format. 

Clear channe l  coun t  
INCHI = I  

Cannot change a n  
undef ined channe l  

PRFX v 

Ver i fy  proper pref ix  
command format. Put  
command del imi ter  
in DLMZ 

L 
Set channe l  
incrementer  
CMDC = 0 

PNUM 
1 I 

Input  positive channe l  
number I D X O  f rom 
operator. No default 
allowed 

Establish default 
indexing variable 0 B =lCHIXI I IDXO) 

L 

128 



Note 6 

Clear the name 
default latch 

PFXZ 

Input A S C I I  
character from 
operator 

- I I X  II ._ PCHO 
- 11:111 _ _  LODO 

, ADD0 

- " C" -- CHNG 
DROP 

- "@" _ _  AT0 
- I O  A00 _ _  
- I I  B "  _ _  RETURN 1 

- II D38 _ _  
- II 71' _ _  
-Other -- EROR PRFX 
"Underscore" 

I 
I 

I 

ASCII  

I1 

OUT$ device 

Verify and complete 
command input  format 

Note 6 

Revise channel count 
INCH1 = m i n l l . l N C H l -  1) 

e RETURN 2 

129 



.. . .. 

Verify proper prefix 
command format. 
Put command delimiter 
in DLM2 

m Set X to unit number 
from operator. Use 
D F l O  for defaults. 
End command l ine 

Note 6 

Clear channel 
counter from runn ing  while load 

[NCHI = 1 

I 

Note 7 

Load binary dump 
from device X into 
core between IDA11 1 andINCHl 1 

130 



r----- 

Set EROR and a l l  
command processing 
routines t o  JUMP 
here when complete 

PRFX 

Verify proper pref ix 
command format. 
Put  command del imiter 
in D IM2 

of channels l imi t  

Save program 
counter for  th is  
place in RTRN 

. Set the input  
and output device 

number 
IN$ = OUT$ = I N U  

MESAGE 

CMD Note 6 

I n p u t  and execute 
DATAO contro l  
commands 

"7" 
* 

Display DATAO 
channel  dif ini t ions 

MESAGE& 

Determine A, the 
output number of 
DUNT(I1 ins t ruct ion 

OUT00 

. 
< 

Determine B, 
the DAC 
channel  number 

B = DCHNlIl  

O U T l l d  

MESAGE 

PNAM 

Get SVSF as scale 
factor for indexing 
variable DIDX(1) 

__ - 

Convert DKZ(1) and 
DKLB(1) t o  floating 
point as AA 

value at 0 volts 

-AA*SVSF 

I I 
I 
I 
I 
I 
I 
I 

P r i n t  2 spaces 
on OUT$ device 

I 
in floating I 

I 
I 

point on 
OUT$ device 

I 
I 

I 
I 

MESAGE 

P r i n t  4 
spaces on 
OUT$ device 

Determine A, the 
scaling power of 2, 
by decoding sh i f t  
ins t ruct ion in 

in floating 
point on 
OUTS device 

Add increment 
to loop counter 
I = I + l  

4 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

131 



ENTER 0 

Determine scaling 
mul t ip l ier  

cc SVSF '10 . VOLT 
BB - AA 

Get scale factor SVSF 
fo r  INDX indexing 
variable 

Obtain AA, a n  SFAE 
f rom operator. Use 
EU values for  names. 
DLMZ = de l imi ter  

Nondefaultable 
operands mus t  L- f o l l w  

o_( 

I- - 

Select A such  
that  0.5 < 

Split CC in to  a n  integer 
mul t ip ly  and  a shift. 
Save the mu l t i p l y  
TDK l  = CC. Z-(A+13! 215 

sh i f t  A 

P r i n t  "SPOF" 
on OUTS 
device 

Set TEX = a  f u l l  ar i thmet ic  
left sh i f t  A times inst ruct ion 
if AZO.  o r  a fu l l a r i t hmet i c  
r i gh t  sh i f t  A times 
ins t ruc t i on  if A < 0 

Calculate offset 
-AA.  ~ c . 2 - A  BE = ___ 

Shi f t  i s  tw big 
for  a s ing le 
i ns t ruc t i on  

I 

62  16 
I 

on OUTS 
device 

I 
The offset i s  
too great 

Convert BB to 
double-precision 

in ITDKZ, TDKBl 

L 

Decode 8. a Dac 
u n i t  f rom a past 
DUNT(I1 i ns t ruc t i on  

Get positive u n i t  
number B f rom 
operator. Use B 
for  defaults. DLMZ = 
de l imi ter  

Set TUN to a wr i te-  
Dac-un i t  - 6- f rom - 
accumula lor  i ns t ruc t i on  

Get Dac B 
f rom p r a t o r .  
Use DCHN(IDXO1 
for  defaults. 
DLMZ = de l imi ter  

Terminate 
command l i ne  

Save Dac number 
DCHN(IDX0I = B 

DEXPIIDXOI = TEX 
DKl(IDXO1 = TDK l  
DKZ(IDXO1 = TDKZ 

132 



Verify proper prefix 
command format 
Put command delimiter 
in DLME 

PU Note 

Complete command ani 
produce binary dump 
of core from [DA l I  to 
INCHI 

6 RTRN 

PRFX 9 
Verify proper prefix 
command format 
Put command delimiter 
in DLM2 

Note 7 

control DATA0 
xo1 = s1 
DA1 z TORG 
NCH NSCH 

Change number 
of channel l imi t  

NBUF = 80 

Set EROR and all 
command processing counter for th is 
routines to jump 
here when complete 

Save program 

place in RTRN 

I 

1 
MESAGE$ 

SIZE" on OUT$ 

I 

Display 2 digits 
d I on OUT$ 
device 

MESAGE 

Pr in t  2 spaces 
on OUT$ device 

indexing variable 
SIDXU) on OUT$ 

Pr in t  TORG (I) 
in octal on 
OUT$ device 

MESAGE$ 

J 

OPN-r\1 

Note 6 

Input and execute 
SAMPLE control 
commands 

L J - --__-______ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

133 



pref ix  command 
format 

Get A, a positive 
integer, f rom 
operator. Use SIZE 
for  defaults. DLMZ = 

de l imi ter  

:KCR & 

Validate delimiter; 
terminate l i ne  

"#AVERAGES =" 

Clear default 

Get B, a positive integer 
f rom operator. Use SVLH 
for  defaults. DLMZ 
delimiter 

I. ~ 

Validate delimiter; 
terminate l i n e  

L imi t  number 
of ave rqes  

Other, . 

Obtain address 6 
f r om operator. Use 
0 for  default. DLMZ = 
de l imi ter  

I f  B t 1. AVLH = -6; 
If B = 1, AVLH = 6. 
SVLH = AVLH 
SIZE = A 

Was 

Improper format  o r  
l i n e  cancelled by # . supply s t o r q e  

block address 
6 = TORG(AI + SIZE 

Save s t o r q e  
block address 

TORGUDXO) = 6 

Calculate f i r s t  
unused core at 
end of block 
A = 8 + SIZE 

in octal o n  

P r i n t  "CRLF" 
o n  OUT$ device 

(3 RETURN 

Use CMDC 

th i s  rou t i ne  

" A "  RETURN 

Calculate last 

Error: There a re  n o  
channels  t o  get address ,ep,, 

EROR 

134 

a 



Flow charts for CLRSMP, DATAO, and SAMPLE follow. 

a CLRSMP 

Initialize loop 
counter 

Set AVLH to 
clear storage 
blocks 

I >  

Return AVLH to 
proper value 

AVLH = SVLH 

23 RETURN 

135 



DATA0 - I------ 

Initialize the  
loop counter 

executing 

Note 8 

Change shi f t  
instruct ion 

& Note 8 

DACW = DUNTtI) 

Noti 

Calculate scaled output using 
integer arithmetic 

= ILOClDIDXI1))l. DKUI) +(DK~(I),DKZB(I 
4 

Descale and truncate 
output by executing 
SFTO instruction 
A = A2 shifted 

\L 

ADC's using two words 
or two instruct ions 
should generate 2nd 
instruct ion wi th DACW 
above and execute it here 

Append 
channel 
number 

DCHN(1) to A 

. 
136 



Enter 
SAMPLE 

AVLH < -1 
(averaging) 

X is not a 
sample 

I I number 9- Yes 

I I 

0 RETURN 1 

Gather and 
store samples 

I 
- - - -__ -_ - I  

I I 

I 

RETURN 2 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

137 



The subroutines used by the command processors follow in alphabetical order. 

ENTER ( A D F S  ] 
F H  

& Default v,al,ue = 0.0 
Obtain AA. an SFAE 
from operator. Use 
address for names, 
D L M P  = delimiter. 
Save default 

Convert A A  
to integer 

X = A A  

ENTER (71 

X is address; 
Y i s  default 

indicator 

\1 
RETURN 
(X, Y) 

No 

V 

Round up Round down 
X X -  x x t o . 5  XX = XX - 0.5 

. . 
Convert XX 
t o  integer 

x =  xx 

RETURN (e) 

138 



c :;: 1 -1 
or l ine cancelled 
(7) 

(5 RETURN 

Set Y to 
indicate 
name not a B = ACUM 

s ,  

Set Y to 
indicate 
name found 

B is  the indexing 
variable. Return 
as X argument 

X -  B 
I 

I 
I 

RETURN 

139 



(T) 

Get scale factor 
SVSF = (SF(X), 

RETURN (,I 

No 

Change SVSF 
SVSF = 1.0 

0 RETURN 

140 



Note 10 

(7 
X i s  default 1 . value, 1 

Not valid 
table or 
for mat 
number 

A isvalid: 
re tu rn  as 
argument Y 
Y = A  

RETURN ( - - I  

Get X, and A S C I I  
character f rom IM 
device; output 
"l ine feed" i f  char-  
acter i s  "CR" 0 4  X <  '215 

Yes 

~ 

(+) RETURN 

141 



ENTER 

r 

able obtained from 
Xth element of 
data table, pointed 
toby  DAC 

I mproper for mat 
or l ine cancelled 
by "Y" 

Other "CR" 
I 

Set default 
Default val 

Obtain XX, a n  SFAE, 
from operator. Use 
scale factor for names. 
DLM2-delimiter. Save 
default indicator i n  Y 

indicator X 
to  indicate 
defau It 

XX i s  scale factor; 
Y i s  default in- 
dicator 

RETURN 

142 



NANU 
Get a name o r  
number f rom 

XX . number 
received f rom 

NANU 

Execute subroutine 
[ X I  lo get number 
XX. Use indexing 
variable f rom NANU 

S e t Y t O  
indicate 
entry 
defaulted 

XX is  value of 

Y i s  default 
indicator 

RETURN 

1 set y to  1 
indicate Save DLMZ 

as operator 
OP = DLMZ 

Get a name o r  
number f rom 

delimiter: default 
value - 0.0 

operand must 
lollw operator 

AA -number 
Execulc ,uuIuuLllle 
I X I  toget number 

variable from NANU 
1 1  AA. Use indexing 1 1  1 rKe:$drom 1 
u--w -+ 

143 



J/ 
Set name 
defaulted 
latch, NLTH 

J/ 
I ni t ia lize 
loop counter 

I = -6 

Input ASCII char-  
acter DLM2 from (i operator No 

No Yes Yes 

I 

to loop counter 
Number not 
f i rst  character; 
therefore. i s  

Name is  c 4 c h a r -  
acters. Center it 
in 5-character 
field 

TOO many 
characters 

Truncate D M 2  in  the  proposed 
to 6 bits and 
save in BUF(1 +5)  

(T) Reset 

I 

Add space before 
name. For I = 0,4 
B U F ( I + l )  = BUF(I )  
BUMOJ = '40 

Pack name 
BUF(O), BUF(1) = 

BUHO) to BUF(4) 

4 
RETURN 

144 



~ 

Set NGLH to 
indicate no 
negative sign 
entered 

f L  

input name 
from operator 
Pack in BUF. 
DLMZ =delimeter 

j l N D  Set 5 B to the 
indexing vari- 
able of defined 1 name, 1 1  

Set NGLH to 
indicate 
negative sign 

~ 

MESAGE 

\devi;' 1 
Set Y to  indi- 
cate name was 
entered 

X is  indexing 
variable B 

RETURN 

Assume DLMZ is 
f i rst  character 
of an octal or 
decimal number 

number from 
operator. Save 
in XX. Put 
delimiter in DLMZ 

Set Y to 
indicate 
default 

indicate num-  
ber was entered 

XX i s n u m -  
ber Y is 
entry flag 

(-F) 
X is integer 
to be pr inted 
in octal 

"apostrophy" and 
"space" on OUT$ 

device 

Pr in t  6 
octal digits 
of X on 
OUT$ device 

MESAGE 

Print  2 
spaces on 
OUT$ device 

RETURN 
cxx, Y) 

145 



pref ix  command 
format. Put  
command del im- 
i ter  in DLMZ 

r---- 
r--- 

Improper format 
o r  l ine cancelled 
by "Y" 

variable for 
name to be 
pr in ted 

P r i n t  one 
space on 
OUT$ device 

Unpack name 
f r o m  (NAMUX), 
NAM2( X)) 

packed ASCII 
characters o n  

P r i n t  one space 
on OUT0 device 

a RETURN 
r- 

ENTER (TI 
I ;a,sed;ult 1 ~ 

Improper format 
o r  command l i n e  
cancelled by "X" 

'x,omma" 

Obtain octal o r  
decimal number 
N f rom operator. i DLMZ = delimiter. 

N defaulted 

Convert N 
to integer 

Y = N  

1 I 
Use default value 

146 



A S C I I  character 
from operator 

Improper format 
or l ine cancelled "Comma" t 

"Space" 

Other 

DLM2 = "comma" Fl 
~ 

entered 

Yes 
RETURN _ _ _ _ _ -  

Improper format 

-~ 

number f rom 
operator. Use 
DF9 for defaults. 
End command 

I 1-l 

PUNCH 

of core between 
locations Y and 2 
on device X 

MESAGE 

Pr in t  "VERIFY?" 
on OUT$ device 

character, from 

Get delimiter 
f rom operator 
and check that 
it i s  "CR" 

"N" 

RETURN 

UNIT & 
Set X to u n i t  
number from 
operator. Use 
DFlO for defaults. 
End response l ine 

VER I FY 

reading from device 

w i th  core between 
locations Y and Z 

147 



ENTER ( 7 1  
X i s  data 
table 

Establish DAC as 
a postindexing" 
pointer to data 

c 

Set Y to length 
of table X 

Y = LGTH(X) 

RETURN (e) 
"Depends upon machines 
addressing modes and  
methods 

ENTER (7) 
X i s  data table 
sequence number  

IVAR 

Get X th  indexing 
variable f rom 
data table. Save 

OUT$ device VI 
P r i n t  10 
spaces on 
OUT$ device 

t (e) RETURN 1 

148 



(T-) 

Set Y =indexing 
variable of de- 

X i s  indexing 
variable for 
definit ion to 
be displayed 

OUT11 

P r in t  3 digits 
of X on OUTS 
device 

P r in t  name for 

P r in t  L O U X I  
in octal on 
OUT$ device 

Obtain scale 
factor SVSF 
for indexing 
variable X 

OUT22 

P r in t  SVSF i n  
floating point 
on OUT$ device 

MESAGE 

Pr in t  2 spaces 
on OUT$ device 

scale factor SVSF 
for indexing 
variable X 

1 A 
Calculate maxi mum 
integer EU value 

A A  = 32768.0. SVSF 

OUT22 

Calculate EU 
value for 1 volt 

A A  =3Mo.O.SVSF 

OUT 22 

MESAGE 

Pr in t  "CRLF" 

RETURN 

ENTER ( T I  
No - 1 

f ind 

P r in t  "U" 
on OUT$ 
device 

Use default 
indexing 
variable X 

Y - x  

Q 

Y i s  desired 
indexing 
variable 

RETURN 

149 



I 
Determine i f  
table number 
DTLH i s  f u l l  

X i s  indexing 
variable to be 
added to open 
data table 

I I I 

Save and add incre-  
ment to table length 
A = LGTH(DTLH); 
LGTH(DTLH) = 

LGTH(DTLH) + 1 

A l l  tables are 
closed. Cancel 
remainder of 
command. 

I 
I 
I 3 RTRN 

Store X in 
A t h  element of 
data table pointed 
to by DAC 

\1 . 

Display the number 
of table entr ies after 
last l i n e  terminator 

In i t ia l ize 
loop variable 

Add increment to 
loop variable 

I =  1 + 1  

4 

P r i n t  2 
digits of 

i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

e3 RETURN 

150 



ENTER cia 
Get XX, an octal 
o r  decimal number, 
f rom q e r a t o r  
( In device) 

Put delimiter 
as received 
from TTYR, in 
DLMZ 

Save entry de- 
scriptor, as re- 
ceived from TTYR, 
as Y (default, 
octal, decimal) 

RETURN 
(XX, Y) 

I 

ENTER 

X i s  default 
device number l ine cancelled by 

Improper format o r  

I 
I 
I 

Other I 

Get positive integer 
Y from operator. 
Use X for default; 
DLMZ =delimiter 

Terminate 
command 
l ine 

Use X as u n i t  
Y = X  1 1 

Y i s  desired 
unit number 

(e) RETURN 

X isvalue. Y i s  
indexing variable 

Get scale factor 
SVSF for indexing 
variable Y 

Yes 

OPNT 

Convert X to 
floating point 

A A - X  

I 

Descale 
AA = AA. SVSF 

MESAGE \1/ 

RETURN 

151 



APPENDIX H 

S U B ~ U T I N E  FUNCTIONS 

In the descriptions that follow "external subroutine?' refers to subroutines that are 
not part of the INFORM program, "internal subroutine'! refers to subprograms that 
a re  included in the assembly of INFORM. 

ADRS: Internal routine to input operator-supplied octal o r  decimal addresses. The 
address supplied and information indicating default a r e  passed back to the main 
program a s  the first and second arguments. The MATH subroutine is used for in- 
put; hence, the delimiter is contained in DLM2. PLDRS branches to EROR is the 
address entered is invalid. 

AIP: CIPHER 1/0 library subroutine that inputs a single word from the 1/0 device 
whose number is in the IN$ register. The word "input" is passed back in the 
hardware A accumulator. Any commands o r  software buffers required by the de- 
vice to accomplish a single-byte input task a re  performed. Information is re- 
turned in the least significant bits of A .  The hardware B and X registers are 
unaffected. Only input from devices 1 to 5 is accepted, the input being cancelled 
for  other devices. No e r ror  messages a re  issued. 

AIPX: External subroutine that inputs a single word from the 1/0 device whose number 
is in the hardware X register. The word input is passed back in the hardware A 
accumulator. Any commands o r  software buffers required by the device to accom- 
plish a single-byte input task a re  performed. Information is returned starting with 
the least significant bits of A.  The hardware B and X registers a r e  unaffected, 
only input from devices 1 to 5 is accepted, the input being cancelled for other de- 
vices. No e r ror  messages a re  issued. 

AOP: External subroutine that outputs the hardware A accumulator to the 1/0 device 
whose number is in the OUT$ register. Any commands o r  software buffers re- 
quired by the device to accomplish a single-byte output task are performed. Only 
input from devices 1 to 5 is accepted, the output being cancelled for other devices. 
No er ror  messages a re  issued. Output is taken from the most significant bits 
of A .  The hardware registers a re  unaffected. 

AOPX: External subroutine that outputs the hardware A accumulator to the 1/0 device 
whose number is in the hardware X register. Any commands o r  software buffers 
required by the device to accomplish a single-byte output task a re  performed. 
Only output from devices 1 to 5 is accepted, the output being cancelled for other 

152 



devices. No e r ror  messages a re  issued. Output is taken from the most signifi- 
cant bits of A. The harchvare registers a re  unaffected. 

A$22: External subroutine to add a floating-point real number in the floating-point ac- 
cumulator to a real-valued argument from memory. The real-valued result is in 
the floating-point accumulator. 

point accumulators and scales this number to a machine integer. The result is 
passed back a s  a floating-point real number. The indexing variable in INDX is 
used to locate the scale factor. 

nated by commas. This routine is used to supply the carriage-return line feeds 
necessary to format lines on the operator's input consol. 

Used for initialization when SAMPLE is filtering collected data by using the aver- 
aging feature. Its use is optional when SAMPLE is not averaging. 

CMD: Internal subroutine that interprets DATAO and SAMPLE control command key 
characters and branches to the appropriate command processing routine. Two 
returns to the calling program are  implemented: one for ? key characters, and 
one for B key characters. 

C$12: External subroutine that converts the integer value in the hardware A accumu- 
lator to a floating-point real value in the floating-point accumulator. 

C$21: External subroutine that converts the floating-point real value in the floating- 
point accumulator to an integer value in the hardware A accumulator. 

C$24: External subroutine that converts a double-precision value in the hardware A 
and B accumulators to a floating-point real value in the floating-point accumulator. 

C$42: External subroutine that converts a floating-point real value in the floating-point 
accumulator to a double-precision integer value in the hardware A and B accumu- 
lators. 

CD20: Internal subroutine that receives a floating-point number through the floating- 

CKCR: Internal subroutine used to supply carriage returns for command lines termi- 

CLRSMP: Subroutine used to clear the storage blocks of the SAMPLE subroutine. 

DATAO: Dynamic data display program described in this report. 
D$22: External subroutine to divide the floating-point real value in the floating-point 

accumulator by the real-valued argument from memory. The result returns in the 
floating-point accumulator . 

the FDDH subroutine. It will terminate any incomplete line and produce an addi- 
tional line representing a checksum for the incomplete line. If FDDEND is called 
more than once in succession, only the first call will produce output. If the last 
line of the data dump was complete, no output will  ever occur. This subroutine 
will also re-initiate for subsequent data dumps by executing a portion of FDDH, 

FDDEND: CIPHER 1/0 library subroutine used to terminate a data dump initiated by 

153 



but it will  not print a header line nor change the output format as does the FDDH 
subroutine. See the 11$111 and 11$211 command descriptions for typical outputs using 
these routines. The 1/0 device whose number is in the OUT$ register is used. 

FDDH: CIPHER 1/0 library subroutine to set the format for and to initialize data 
dumps: The first argument supplied through the hardware A accumulator is 
printed as an integer on the first line twice. The number of significant digits ap- 
pearing is set by the integer value of the second argument. The third argument is 
an integer indicating the number of data points to be printed on each line preceding 
the checksum for that line. The fourth argument is a coded binary number setting 
the format of the data output routines FDD11, FDD22, etc. The least significant 
six bits indicate the number of digits to be output for integer values printed by the 
F D D l l  subroutine o r  the number of digits of the mantissa for real values printed 
by the FDD22 Subroutine. The next most significant three bits indicate the number 
of digits to be output for the exponent of real values. The remaining bits indicate 
the number of digits appearing in the integer checksum for each line. See the I 1 $ l 1 '  

and I1$2l1 command descriptions for typical outputs using these routines. The 1/0 
device whose number is in the OUT$ register is used. 

FDD11: CIPHER 1/0 library subroutine to output integer values from the hardware A 
accumulator in an integer format on the dump initiated by the FDDH subroutine. 
The checksums and line terminators a re  automatically printed when required a s  
dictated by the last call to FDDH. The 1/0 device whose number is in the OUT$ 
register is used. See the $1 and $2 command descriptions for typical outputs using 
these routines. 

FDDl2: CIPHER 1/0 library subroutine with the input of F D D l l  and the output of 

FDD2l: CIPHER 1/0 library subroutine with the input of FDD22 and the output of 
FDDl l  . 

FDD22: CIPHER 1/0 library subroutine to output floating-point real values from the 
floating-point accumulator in a floating-point format on the dump initiated by the 
FDDH subroutine. The checksums required are automatically printed when re- 
quired as dictated by the last CALL to FDDH. The 1/0 device whose number is in 
the OUT$ register is used. See the $1 and $2 command descriptions for typical 
outputs using these routines. 

FDD44: CIPHER 1/0 library subroutine similar to F D D l l  except the arguments are  
double-precision integer. 

FIND: Internal subroutine used to locate names in the N A M l  and NAM2 tables. The 
NAMl and NAM2 tables are searched for the name residing in BUF. A method is 
also used to indicate to the calling program whether the name was located as a de- 
fined name. If found, a normal return occurs, with the indexing variable in the 

FDD22. 

154 



hardware B accumulator. If not found, a different return point is used with the 
value of ACUM in the hardware B accumulator. 

QSF: Internal subroutine to obtain the floating-point real-valued scale factor from the 
SF table. The indexing variable supplied as the first argument in the hardware B 
accumulator is used. The scale factor is returned in SVSF. The second argu- 
ment, returned through the A accumulator, indicates whether the scale factor was 
zero. 

valued scale factor from the SF table. The indexing variable supplied as the argu- 
ment is used. If the scale factor is zero, it is set to one. 

H$22: External subroutine used to store the floating-point real value of the floating- 
point accumulator in the argument memory location. 

GTAB: Internal subroutine used to obtain the data table number or format type num- 
bers from the operator. The routine used PNUM to obtain the number and uses 
the value supplied as the first argument a s  a default value. The resulting numer- 
ical value is checked before it is passed to the calling program as the second argu- 
ment. If the value is not 1, 2, or 3, the routine branches to EROR. 

GSFB: Internal subroutine that used GSF to obtain, in SVSF, the floating-point, real- 

INFORM: The subject of this report. 
INPT: CIPHER 1/0 library subroutine that inputs and outputs a single eight-bit charac- 

t e r  using the 1/0 devices whose numbers a re  in the IN$ and OUT$ registers. The 
character is returned in the least significant eight bits of the hardware A accumu- 
lator. If the character was a carriage return, a carriage-return and line feed is 
turned around to the OUT$ device. The AIP and AOP subroutines a re  used for I/O. 

IVAR: Internal subroutine used to unpack indexing variables from data-table sequences 
contained in TABl, TAB2, or TAB3. This subprogram requires that the DAC lo- 
cation be established a s  a postindexing pointer to either TABl, TAB2, or TABS. 
The sequence number of the data table is supplied through the hardware A accu- 
mulator. 

LOAD: CIPHER 1/0 library subroutine used to load relocatable-binary-dump tapes 
produced by the PUNCH subroutine. The first argument is the 1/0 device to be 
used and is passed in the hardware X register. The values read a re  stored in 
memory starting at the memory address supplied a s  the second argument in the 
hardware A accumulator up to and including the memory address supplied as the 
third argument in the hardware B accumulator. If a checksum er ror  is detected, 
a different return point is used, and no further operation takes place. Preceding 
this return, CK is printed on the device whose number is in the OUT$ register. 
The arguments supplied through the hardware registers remain intact on program 
exit. All device operations required for proper input and output are performed. 

155 



The AIPX and AOPX subroutines a re  used for I/O. Note: This subroutine does 
not open o r  close device files; thus multiple dumps may be read in succession. 

~ $ 2 2 :  External subroutine used to load the real-valued argument in memory into the 
floating-point accumulator . 

MATH: Internal subroutine used to input and evaluate a sequentially formed arithmetic 
expression from the operator. The first argument, returned through the floating- 
point accumulator, is the value of the expression. The second argument, returned 
in the hardware A accumulator, is an indicator for default detection. If the SFAE 
is defaulted, the first argument is set to zero. Any character not part of the SFAE 
is used a s  a delimiter to cause return. Its value is held in DLM2. Improperly 
formatted SFAE's cause a branch to EROR. 

the IN$ register. The message to be printed is supplied as an argument. The 
AOP subroutine is used for output. The hardware registers a re  unaffected. 

point accumulator by the real-valued argument in memory. The result is in the 
floating-point accumulator . 

NAME: Internal subroutine that gathers a name for a named location from the opera- 
tor .  The 1/0 device whose number is in the IN$ register is used. The name ob- 
tained is packed and stored in B U F  . (See text for packing details. ) A return oc- 
curs if the first character of the name is not alphabetic o r  when the first nonalpha- 
numeric entry is received. A latch (NLTH) is set if no name character was en- 
tered before the branch back character. In this case the name stored in BUF con- 
sists of five spaces (the no-name name). 

operator. The routine distinguishes names from numbers and detects defaults. 
The first argument returned will  be an indexing variable in the hardware €3 accu- 
mulator, if a name was entered, o r  a floating-point real value in the floating-point 
accumulator, if a number was entered. The second argument returned is an indi- 
cator of what type was detected. The routine uses the NAME and TTYR2 subrou- 
tines. 

N$22: External subroutine used to negate the floating-point real value in the floating- 
point accumulator. 

OPNT: Internal subroutine that prints six octal digits of the integer argument supplied 
in the hardware A accumulator. This value, which is printed using the OUTOO 
subroutine, is preceded by one space and one apostrophy. The value is followed 
by two spaces. The 1/0 device whose number is in the OUT$ register is used. 

OUTOO: CIPHER 1/0 library subroutine that prints octal digits of the integer argument 
supplied in the hardware A accumulator. The number of digits printed is supplied 

MESAGE: External subroutine to print messages on the 1/0 device whose number is in 

M$22: External subroutine used to multiply the floating-point real value in the floating- 

NANU: Internal subroutine used to gather either numerical o r  name entries from the 

156 



as an integer argument and must be a value between 1 and 6 .  If the number being 
printed has a significant digit beyond the number of digits requested, an asterisk 
is printed for all digits. The hardware A, B, and X registers a r e  unaffected. 
All 1/0 is done using the AOP subroutine. 

OUT11: CIPHER 1/0 library subroutine that prints decimal digits of the integer argu- 
ment supplied in the hardware A accumulator on the 1/0 device whose number is 
in the OUT$ register. The number of digits printed is supplied as an integer argu- 
ment. Lf the number being printed has a significant digit beyond the number of 
digits requested, and asterisk is printed for all digits. The hardware registers 
a r e  unaffected. All 1/0 is done using the AOP subroutine. 

OUT22,OUTl2: CIPHER 1/0 library subroutine that prints the floating-point real value 

01 : 

(integer value for OUTl2) in the floating-point accumulator (hardware A accumu- 
lator for OUT12) on the 1/0 device whose number is in the IN$ register. The for- 
mat is determined by a coded integer argument. If the number being printed has 
a significant digit beyond the number of digits requested, an asterisk is printed for 
all digits. The floating-point accumulator and hardware registers a re  unaffected. 
All 1/0 is done using the AOP subroutine. Double-precision integer values of the 
mantissa and exponent printed are returned as arguments in common core. 
Internal subroutine that represents the unique portion of the ADDO sequence which 
adds a channel definition to DATA0 . All required operands except the name oper- 
and are  input from the operator. Entires a re  made into the DK1, DK2, DKBB, 
DCHN, DUNT, and DEXP matrices. The position used is equal to the integer in- 
dex of IDXO. Inputs a re  accomplished using various 1/0 subroutines and occur on 
the device whose number is in the IN$ register. 

PFX2: Internal subroutine used for checking the operator's command line format when 
the command has no operands. If the operator enters an operand, the routine 
branches to EROR. 

NAM2 tables. The indexing variable to be used is supplied through the hardware 
B accumulator. 

vert them to integer values, and verify that they are positive. The number to be 
used if the operator defaults is supplied by the calling program as the first argu- 
ment. The effective input is returned as the second argument. Before this argu- 
ment is returned, it is tested to see if it is a positive integer. If it is not, the 
command in progress is cancelled by a branch to EROR. Hence, operator defaults 
are excluded if the default supplied as the first subroutine argument is negative. 
The TYR subroutine is used to input the numbers, and the delimiter that caused 

PNAM: Internal subroutine to print a name of a named location from the NAM1 and 

PNUM: Internal subroutine to input octal or decimal numbers from the operator, con- 

157 



the return is saved in DLMB. PNUM will  exit to ERQR if this delimiter is neither 
a carriage return o r  comma. 

keyword. It is used by commands not using a name operand. A branch to EROR 
occurs if a name was entered. 

P U :  Internal subroutine to produce relocatable binary-dump tapes of the core locations 
between and including the addresses of the arguments supplied. This routine com- 
pletes the command line by receiving the I/O device operator from the operator. 
Provision is also made for the operator to verify the dump produced if desired. 
The PUNCH and VERIFY subroutines a re  used to produce and verify the dump. 

PUNCH: CIPHER I/O library subroutine to produce relocatable binary-dump tapes of 
the core locations between and including the addresses of the first aid and second 
arguments supplied through the hardware A and B accumulators. The 1/0 device 
number supplied as the third argument in the hardware X register is used. The 
AOPX subroutine is used for output. Note: This subroutine does not open o r  close 
device files, so that multiple dumps may be produced in succession. The argu- 
ments supplied through hardware registers remain intact on program exit. 

PRFX: Internal subroutine to verify that no name was entered before the command 

SAMPLE : Dynamic data collection program described -m this report. 
SETU: Internal subroutine that establishes DAC as a postindexing pointer to the data 

table number supplied in the hardware B accumulator. Also sets STOP equal to 
the length of the data table and returns this value in the hardware A accumulator. 

SPCR: Internal subroutines used to obtain an indexing variable for a data table. The 
indexing variable is tested to see if it equals the blank space o r  line terminating 
codes. Jf it does. the proper number of spaces to produce a blank in the table o r  
a carriage-rt;Lurn line feed is printed. Two return locations from the subroutines 
a re  used: one to indicate that a blank o r  "CRLF" was printed, and one to indicate 
nothing was printed. 

STTS: Internal subroutine used to print the definition of a named location on the output 
device whose number is in OUT$. 

SUFX: Internal subroutine used to obtain the indexing variable of named-location oper- 

s1: 

158 

ands for commands that use and permit a default of the name operand. The index- 
ing variable to be used for defaults must be supplied as the first argument. The 
effective indexing variable a s  entered o r  defaulted is returned as the second argu- 
ment. Jf an undefined name is entered, the routine branches to EROR. 
Internal subroutine that represents the unique portion of the ADDO sequence that 
adds a channel definition to SAMPLE. All required operands except the name op- 
erand a re  input from the operator. Entries are made into the TORG matrix at the 
position indicated by the IDXO index. 



S$22: External subroutine that subtracts the real-valued operand from the floating- 
point real value in the floating-point accumulator. The result resides in the 
floating-point accumulator. 

TADD: Internal subroutine that adds the indexing variable supplied through the hard- 
ware B accumulator to the open data-table sequence array, TAB1, TABB, or 
TAB3. The command in progress is cancelled by a branch to EROR if the length 
permitted for the open table is exceeded. If no data table is open, no action is 
taken; but the instruction in effect is cancelled by a jump to the address contained 
in RTRN. 

the input device whose number is in the IN$ register. A return from the subrou- 
tine occurs whenever a nonnumeric character, except +, -, E, t ¶  S, B, or rubout, 
is entered. On return, the fourth argument contains the character that caused the 
return, and the third argument contains a value to describe which type of input 
format was used. A value greater than zero indicates a floating-point format, a 
value less than zero indicates an octal format, and a value of zero implies the 
number was defaulted. The numerical value o r  second argument is zero for de- 
faulted numbers. The number entered is returned in floating-point real format in 
the floating-point accumulator a s  is also stored in a location supplied a s  the first 
argument. The AIP subroutine is used for all inputs. 

TTYR2: Additional entry point to TTYR used when the first character to be supplied 
from the input device has already been input and is received as an argument in- 
stead. 

a s  the fourth argument from TTYR in DLM2. The format type supplied by TTYR 
as the third argument is retained and passed as  the second argument. 
input by TTYR is passed a s  the first argument in the floating-point accumulator 
and locations N .  

UNIT: Internal subroutine through which all unit number command operands are  
gathered. The first argument passed to the subroutine is the value to be used for 
defaults. The effective unit number determined by operator entry or default is 
passed back a s  the second argument. The delimiter is saved in DLM2. This rou- 
tine also calls CKCR to terminate a command input line. 

supplied a s  the first argument. The indexing variable supplied a s  the second argu- 
ment is used to locate the scale factor to be used. The MESAGE and OUT22 sub- 
routines a re  used to print the calculated value in standard floating-point format 
preceded by one space. 

TTYR: CIPHER 1/0 library subroutine used to input octal or decimal numbers from 

TYR: Internal subroutine that calls the TTYR subroutine and puts the delimiter passed 

The number 

VAL: Internal subroutine used to descale and print the value of the integer operand 

159 



VERIFY: CIPHER 1/0 library subroutine that reads a relocatable binary-dump tape 
produced by the PUNCH subroutine. The tape is read from the 1/0 device number 
supplied as the first argument in the hardware X register and compared with the 
values in memory. The starting and ending addresses are supplied as the second 
and third arguments. If no e r ror  is detected, return is to return point 2 .  If an 
e r ror  is detected in either the memory comparison or  checksum validation, a re- 
turn to point 1 occurs and no further verification takes place. Preceding this re- 
turn, Y!Kf1 is printed on the 1/0 device whose number is in the OUT$ register. 
The hardware A, B, and X registers are unaffected. All input and output a re  done 
through the AOP and ALPX subroutines. Note: This subroutine does not open o r  
close the device files so that multiple dumps may be read in succession. 

XO1: Equivalent to S1 o r  01. (See appendix G, flow chart note 6 .  ) 

160 



APPENDIX I 

69 

SUMMARY OF COMMANDS 

Enable variable t r i p  mode 

INFORM COMMANDS~ 

Additional operands 
character 

Mode control  

(DF3}, { DF4}, {DF5} 

Page I Description 

70 Reenable previous t r i p  mode ! 
70 

70 

71 

71 

7 1  

71 

72 

7 2  

72 

7 3  

7 3  

74 

74 

74 

75 

75 

75 

Disable var iable  t r i p  mode 

Accept DATA0 control commands 

Accept SAMPLE control commands 

Exit subroutine INFORM 

Clea r  and open data table  

Open data table  

Close an  open data table 

Add name to open data table  

Add name and/or  start new line 
on open data table  

Delete last line f r o m  open datatable  

P r in t  data table 

Display cu r ren t  EU value 

Calculate and display a d d r e s s  

Calculate and display sca l e  f ac to r  

Calculate and display EU 

Calculate and display octal  words 
of floating-point-real EU value 

L i s t  co re  

Prefix 
operand 

None 

None 

None 

None 

None 

Kone 

None 

None 

None 

I N 3  

None 

Wa} 

None 

None 

None 

None 

None 

{ Na} x {SFAE) 
HLT? Yn 

None 

None 

None 

None 

None 

Data table manipulation 

{Tn} 

P n }  

None 

None 

None 

None 

None 

SFAE 

SFAE 

SFAE 

SFAE 

Default values  and notes  

N a  - Default = blank space added t o  table 

Na - Default = no name added before  
new line 

_~~~.~~___~.~_~__._____________________ 

DF3 - Default - fo rma t  type 1 
DF4 - Dcfault - data table 1 
DF5 - Dcfault line p r in t e r  (unit 5) 

Na - Default = last used name operand 

Addrcss  used f o r  names  within SFAE 

Scale  f ac to r  used for names within SFAE 

Current  EU value used f o r  names within 
SFAE 

Current  EU value used f o r  names within 
SFAE 

Ad1 - Default = last Ad1 s tar t ing a d d r e s s  
Ad2 - Default = last Ad2 end addres s  if 

and only if Ad1 defaulted 
= Ad1 if Ad1 not defaulted 

x - Default = last x data type 
Sf - Default = las t  Sf scale fac to r  
D F l l  - Default = operator 's  consol (unit 1) 

161 



__- 

p a g e  

Define a named location 

Default values  and notes  

-_ .~ . 

Redefine a named location 

~ 

76 Scale  and s to re  integer  

- ._ 

Change a default value 

Display all ISFORM definitions 

Display a single INFOmI definition 

Save ISFOFN definitions 

_____- 

- _ _ _ _ _ _ - ~  

Na - Default = last used name operand 
SFAE - Default = 0.0. Current  EU value used f o r  names  
Note: Machine messages  appear  be fo re  and after the SFAE - _  - - .- ~- 

Restore  INFORM definitions 

Definition control  
- .. . 

Na - Default = no-name pa rame te r  
Ad - Default = last name operand's addres s  + 1 
Sf - Default = last name operand's scale fac to r  

. ~ _ _ _  .- _ _  . . . 

Ad - Default = current ly  defined addres s  
Sf - Default = current ly  defined sca l e  f ac to r  
Note: Na mus t  b e  current ly  defined 

Defaulting No - display current  value 

None 1 ; 1 DFn,{No} I 
None {DFIZ} 1 DF12 - Default = l ine  p r in t e r  (unit 5) 

-zZ 1 & 1 {Na} 

___ ~ ___- . 

~ _ _  __ 

_-______ - - -_ - - - 
Na - Default = no-name pa rame te r  

DF9 - Default = pape r  tape punch (unit 2) 

Note: Yn and DFlO supplied as response to VERIFY query 

DFlO - Default = paper  tape r eade r  (unit 2) 

~ - - -_ ~ ~ ~ ~~ 

paper  tape r e a d e r  (unit 2) 

.._____-_ ~ ~ .. 

. 

Display o r  dump data collected by SAMPLE 
.. 

[ T ] & l P L E  channels in fo rma t  I None 1' -; 
I I type l l  
I I type I I  
L I I .- I- - 

aPassive mode data  table  printout defaults: 
DFO - Format  type - default = 1 
D F l  - Data table  number - Default = 1 
DF2 - Output unit number default = line p r in t e r  (unit 5)  

~ _ _ _ _  - 

{DF6}, {DF7}, {DFB] 

-___ __ 
{DFG}, {DFi}, {DFn} 

_ _ _ _ _ ~ - .  

DF6 i Sta r t  channel numbers ,  default = 0 
DF7 = Stop channel number, default = last channel defined 
DFB = Default = floppy disk (unit 3)  

DFG = Sta r t  channel number, default = 0 
DF7 = Stop channel number,  default = last channel defined 
DFY = Default = floppy disk (unit 3) 

. ~ - .  

~ . . ~ .__ ~ _ _  

162 



DATA0 CONTROL COMMANDS 

'age 

87 

86 

&9 

89 

u9 
.- 

- 
89 

~- 

90 

91 

- 

92 

- 

93 

- 

94 

96 

9G 

. -  - 
Description 

Add a new channel definition 

- 

Change a channel definition 

Delete the  highest numbered channel 

Delete all channel defhiitions 

Display a l l  ChaMel definitions 

Save channel definitions 

Restore  channel definitions 

Accept INFORM commands 

Add a new channel definition 

.. ~~ - ~ ~- 
Change a channel definition 

. .~ - 
Delete las t  channel definition 

Delete all channel definitions 

Display all channel definitions 

Define block length 

~. -- ~- 

.. - ~ .- ~ 

. .  - 

- 

Save channel definitions 

~. 

Restore  channel definitions 

Accept INFORM commands 
.~ - 

_ _  

- 

Addit ioNl operands 

{Na},SFAE,SFAE,{Dn},{Dnn} 

xx,{Na},SFAE,SFAE,{Dn},(Dnn] 

None 

None 

{ D F ~ Z )  

{DFg} 
VERIFY? Yn, (DF10) 

{DFlO} 

None 

SAMPLE CONTROL COMMANDS 

Sone 

Sone 

(DFlZ} 
~- 

BLOCK SIZE = [No} 
#AVERAtiES c {No} 

{DFS} 
VERIFY? Yn, [ D F ~ O }  

( D F ~ O }  

None 

Default values and notes 

N a  - Default d u e  = las t  used tianic uperand 
Dn - Default 5 unit itumber Iron1 previous dcfini- 

Dnn - Default = Dac number f r o m  previous defini- 
tion of this  channel 

tion of this  channel 

xx = Channel number 
N a  - Default ii cur ren t  name defined f o r  t h i s  

Dn - Default = cur ren t  unit number  defhied for  

Dnn - Default = cur ren t  Dac number defined f o r  

channel 

this  channel 

t h i s  charuiel 

Does not affect dcfaults fo r  "A" and "C" commands 

Does not affect defaults f o r  "A" and "C" comniands 

DF12 - Default line pr inter  (unit 5) 

DH9 - Default paper  tape punch 
DFlO - Default 
Sate:  Y n  and DFlO supplied in rcsponse t o  

papcr tapc r eade r  

V.?RiFY'? query 

DFlO - Dcfault . paper Lape reader (unit 2) 

~ -- ~- 
Pia - Default - last used inanic opcrand 
Ad - Default 

nel dc,fincd plus cu r ren t  block lcnL@h 
addres s  of highest numbered chan- 

. .  

.xi = Channel number 
Sa - Default . cur ren t  nanic defined fo r  this  

channel 
Ad - Dcfault 

channel 
cu r rcn t  addres s  dcfincd for this 

.~ .~ 

DF12 - Drfault = line p r in t c r  (unit 5) 

80 - Default ~ cur ren t  block s ize ,  initially = 0 

No - Default L cur ren t  n u n b e r  of averages,  
initially - 0 

DF9 - Default - pape r  tapc punch (unit 2) 
DFlO - Default - papcr tape r cade r  (unit 2) 
Note: Yn and DFlO supplicd in response to  

VERIFY? query 

DFlO - Default = pape r  tape r eade r  (unit 2) 
~~ .- ~ 

16 3 



REFERENCES 

1. Szuch, John R .  ; et al. : F l O O  Multivariable Control Synthesis Program: Evaluation 
of a Multivariable Control Using a Real-Time Engine Simulation. NASA TP-1056, 
1977. 

2. Flowchart Symbols and Their Usage in Information Processing. Am. Nat  . Stand. 
Inst. Inc., Stand. no. X3.5-1970. Also FIPS PUB 24, June 30, 1973, U.S. Dept. 
of Commerce, National Bureau of Standards. 

164 



1. Report No. 

NASA TP-1424 

7. Authorls) 

David S. Cwynar 

9. Performing Organization Name and Address 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

- . . - .- . 
2. Government Accession No. 

~- 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

15. Supplementary Notes. 

9. Security Classif. (of this report) 20. Security Classif. (of this page) 

Unclassified Unclassified 
- . -  

- - - - - . . . - . __ - 
3. Recipient's Catalog No. 

21. No. of Pages 22. Price' 

168 A0 8 

5. Report Date 

Janaury 1980 ___ _ _ _ _ _ _ ~  - _ _  
6. Performing Organization Code 

8. Performing Organization Report No. 

E-9810 
_ _ _  

10. Work Unit No. 

505-05 
11. Contract or Grant No 

13. Type of Report and Period Covered 

Technical Paper  
14. Sponsoring Agency Code 

16. Abstract 

INFORM was developed to a id  assembly-language programmers  of mini- and micro-computers 
in  solving the man-machine communications problems that exist when scaled integers are in- 
volved. In addition to producing displays of quasi-steady-state values, INFORM provides an  
interactive mode for  debugging programs,  making program patches, and modifying the displays. 
Auxiliary routines SAMPLE and DATA0 add dynamic data acquisition and high-speed dynamic 
display capability to the program. The report  contains detailed programming information and 
flow charts  to aid in  implementing INFORM on various machines. Detailed descriptions of all 
supportive software are provided. Throughout the report ,  consideration is given to possible 
program modifications to sat isfy the individual u se r ' s  needs. 

-_ 
7. Key Words (Suggested by Author(s)) 

Engine controls; Digital computers; Software 
development; Operating system; Data acquisi- 
tion; Data display; Diagnostics; Interactive; 
Communications; Computer program; System 
analysis 

- 
18. Distribution Statement 

Unclassified - unlimited 
STAR Category 60 

' For sale by the Nat ional  Techn ica l  Information Service. Spr inef ie ld.  V i rg in ia  22161 
NASA-Langley, 1980 



National Aeronautics and 
Space Administration 

Washington, D.C. 
20546 
Official Business 

Penalty for Private Use, $300 

THIRD-CLASS BULK RATE Postage and Fees Paid 
National Aeronautics and 
Space Administration 
NASA451 

1 1 1U,G, 120379 SUO903DS 
DEPT OP THE A I R  POBCE 
AF WFAPONS LAEORATOBY 
ATTN: TECHYICAS ZTBRBBY (SUL) 
KTRTLAND AFB N M  37117 

: If Undeliverabte (Section 158 . 
Postal Manual) Do Not Return 


